首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The ternary system of dodecylpyridinium bromide (DDPB)/acetone/H2O with appropriate composition can form a gel spontaneously and the gel is stable in hydrophobic ionic liquid 1‐butyl‐3‐methylimidazolium hexafluorophosphate ([Bmim]PF6). Based on the gelation phenomenon we observed, the low molecular weight gelator (LMWG) was first tried to immobilize horseradish peroxidase (HRP) on glassy carbon electrode (GCE). The scanning electron microscope (SEM) images, the UV‐Vis spectra and the bioactivity measurement indicate that the gel is suitable for the immobilization of HRP. The direct electrochemistry of the HRP‐gel modified GCE (HRP‐gel/GCE) in [Bmim]PF6 shows a pair of well‐defined and quasi‐reversible redox peaks with the heterogeneous electron transfer rate constant (ks) being 14.4 s?1, indicating that the direct electron transfer between HRP and GCE is fast. The HRP‐gel/GCE is stable and reproducible. Also the electrode exhibits good electrocatalytic effect on the reduction of trichloroacetic acid (TCA), showing good promise in bioelectrocatalysis.  相似文献   

2.
Copper containing nitrite reductase (Cu‐NiR) and viologen‐modified sulfonated polyaminopropylsiloxane (PAPS‐SO3H‐V) were co‐immobilized on glassy carbon electrode (GCE) by hydrophilic polyurethane (HPU) drop‐coating, and the electrode was tested as a reagentless electrochemical biosensor for nitrite detection. The newly synthesized PAPS‐SO3H‐V as an electron transfer (ET) mediator between electrode and NiR was effective, and could be effectively immobilized in HPU membrane. The NiR and PAPS‐SO3H‐V co‐immobilized GCE used as a nitrite biosensor showed the following performance factors: sensitivity=12.0 nA μM?1, limit of detection (LOD)=60 nM (S/N=3), linear response range=0–18 μM (r2=0.996) and response time (t90%)=60 s, respectively. Lineweaver–Burk plot shows that apparent Michaelis–Menten constant (K is 101 μM. Storage stability of the sensor is 51 days (80% of initial activity) in condition of storing in ambient air at room temperature. The sensor showed a relative standard deviation (RSD) of 3.2% (n=5) even in condition of injection of 1 μM nitrite. Interference study showed that common anions in water sample such as chlorate, chloride, sulfate and sulfite do not interfere with the nitrite detection. However, nitrate interfered with a relative sensitivity of 80% due to inherent character of the enzyme used.  相似文献   

3.
《Electroanalysis》2006,18(12):1202-1207
A new type of current sensor, Langmuir–Blodgett (LB) film of calixarene on the surface of glassy carbon electrode (GCE) was prepared for determination of mercury by anodic stripping voltammetry (ASV). An anodic stripping peak was obtained at 0.15 V (vs. SCE) by scanning the potential from ?0.6 to +0.6 V. Compared with a bare GCE, the LB film coated electrode greatly improves the sensitivity of measuring mercury ion. The fabricated electrode in a 0.1 M H2SO4+0.01 M HCl solution shows a linear voltammetric response in the range of 0.07–40 μg L?1 and detection limit of 0.04 μg L?1 (ca. 2×10?10 M). The high sensitivity, selectivity, and stability of this LB film modified electrode demonstrates its practical application for a simple, rapid and economical determination of Hg2+ in a water sample.  相似文献   

4.
The electrochemical reduction of three common insecticides such as cypermethrin (CYP), deltamethrin (DEL) and fenvalerate (FEN) was investigated at glassy carbon electrode (GCE), multiwalled carbon nanotubes modified GCE (MWCNT‐GCE), polyaniline (herein called as modifier M1) and polypyrrole (herein called as modifier M2) deposited MWCNT/GCE using cyclic voltammetry. Influences of pH, scan rate, and concentration were studied. The surface morphology of the modified film was characterized by scanning electron microscopy (SEM) and X‐ray diffraction analysis (XRD). A systematic study of the experimental parameters that affect differential pulse stripping voltammetry (DPSV) was carried out and the optimized experimental conditions were arrived at. The calibration plots were linear over the insecticide's concentration range 0.1–100 mg L?1 and 0.05–100 mg L?1 for all the three insecticides at MWCNT‐GCE and MWCNT(M1)‐GCE respectively. The MWCNT(M2)‐GCE performed well among the three electrode systems and the determination range obtained was 0.01–100 mg L?1 for CYP, DEL and FEN. The limit of detection (LOD) was 0.35 μg L?1, 0.9 μg L?1 and 0.1 μg L?1 for CYP, DEL and FEN respectively on MWCNT(M2)‐GCE modified system. Suitability of this method for the trace determination of insecticide in spiked soil sample was also determined.  相似文献   

5.
A new composite electrode has been fabricated based on coating multi‐walled carbon nanotubes (MWCNTs) and n‐octylpyridinum hexafluorophosphate (OPPF6) ionic liquid composite on a glassy carbon (GC) electrode (OPPF6‐MWCNTs/GCE). This electrode shows very attractive electrochemical performances for electrooxidation of risperidone (RIS) compared to conventional electrodes using carbon and mineral oil, notably improved sensitivity and stability. The oxidation peak potentials in cyclic voltammogram of RIS on the OPPF6‐MWCNTs/GCE was occurred around 230 mV vs. SCE at Britton–Robinson (B–R) buffer (pH 4.0) at scan rate of 100 mV s?1. The electrochemical parameters such as diffusion coefficient (D), charge transfer coefficient (α) and the electron transfer rate constant (k/s) were determined using cyclic voltammetry. Under the optimized conditions, the peak current was linear to risperidone concentration over the concentration range of 10–200 nM with sensitivity of 0.016 μA/nM?1 using differential pulse voltammetry. The detection limit was 6.54 nM (S/N = 3). The electrode also displayed good selectivity and repeatability. In the presence of clozapine (CLZ) the response of RIS kept almost unchanged. Thus this electrode could find application in the determination of RIS in some real samples. The analytical performance of the OPPF6‐MWCNTs/GCE was demonstrated for the determination of RIS in human serum and pharmaceutical samples.  相似文献   

6.
《Electroanalysis》2017,29(4):1069-1080
In this study, we introduce a very sensitive and selective method for the differential pulse anodic stripping determination of Sb(III) ion on the over‐oxidized poly(phenol red) modified glassy carbon electrode (PPhRedox/GCE) in 0.1 mol L‐1 HCl medium. The formation of both poly(phenol red) and over‐oxidized poly(phenol red) film on the electrode surfaces were characterized by electrochemical impedance spectroscopy, X‐ray photoelectron spectroscopy and scanning electron microscopy techniques. An anodic stripping peak of Sb(III) was observed at 0.015 V on the PPhRedox/GCE. Higher anodic stripping peak current of Sb(III) was obtained at PPhRedox/GCE compared with both bare GCE and poly(phenol red) film modified GCE (PPhRed/GCE). The calibration graph consisted of two linear segments of 0.044 ‐ 1.218 μg L−1 and 3.40 – 18.26 μg L−1 with a detection limit of 0.0075 μg L−1. The proposed over‐oxidized polymer film modified electrode was applied successfully for the analysis of antimony in different spiked water samples. Spiked recoveries for water samples were obtained in the range of 93.0–103.0%. The accuracy of the method was also verified through the analysis of standard reference materials (SCP SCIENCE‐EnviroMAT™ EP−L‐2).  相似文献   

7.
A novel composite was fabricated through dispersing multiwalled carbon nanotubes (MWNTs) in gold nanoparticle (GPs) colloid stabilized by chitosan and ionic liquid (i.e., 1‐butyl‐3‐methylimidazolium tetrafluoroborate, BMIMBF4). Transmission electron microscopy (TEM) experiment showed that the GPs highly dispersed on the MWNTs probably due to the electrostatic interaction among GPs, MWNTs and the imidazolium cation of BMIMBF4. X‐ray photoelectron spectroscopy (XPS) indicated that thus‐formed gold nanostructure was mediated by BMIMBF4. When glucose oxidase (GOD) was immobilized on the composite (MWNTs‐GPs) its ultraviolet‐visible absorption spectrum kept almost unchanged. The immobilized GOD coated glassy carbon electrode (GOD/MWNTs‐GPs/GC) exhibited a pair of well‐defined peaks in 0.10 M pH 7.0 phosphate buffer solution (PBS), with a formal potential of ?0.463 V (vs. SCE). The electrochemical process involved two‐electron transfer. The electron transfer coefficient was ca.0.56 and the electron transfer rate constant was 9.36 s?1. Furthermore, the immobilized GOD presented good catalytic activity to the oxidation of glucose in air‐saturated PBS. The Km and Im values were estimated to be 13.7 μM and 0.619 μA. The GOD/MWNTs‐GPs/GC electrode displayed good stability and reproducibility.  相似文献   

8.
A novel carboxyphenyl covalent immobilization technique has been successfully developed to realize the effective attachment of two typical heme proteins, hemoglobin (Hb) and cytochrome c (Cyt‐c), onto underlying glassy carbon electrode (GCE). Primarily, the GCE surface is functionalized with aromatic 4‐carboxyphenyl (4‐CP) group by the electrochemical reduction of diazonium cations, producing covalently linked carboxyl‐terminated active GCE surface to work as a ‘bridge’. Then, Hb and Cyt‐c are readily attached to GCE through the ‘bridge’ by functional covalently combination between ? NH2 terminal groups of proteins and ? COOH terminal groups of 4‐CP, obtaining Hb/4‐CP/GCE and Cyt‐c/4‐CP/GCE. On both electrodes, well‐defined peaks attributing to the FeIII/FeII couple of heme group of Hb and Cyt‐c are clearly observed with the electron transfer rate constant (ks) evaluated to be 2.48±0.05 s?1 and 2.73±0.05 s?1, respectively. It is attractive that the formal potential (E°') of the immobilized Hb and Cyt‐c are estimated to be 50 and 100 mV (vs. SCE), respectively, which are closer to the standard redox potential of native Hb and Cyt‐c in solution, owing to the good biocompatibility of 4‐CP groups. The electrodes also exhibit fast response, high sensitivity and well stability for the amperometric detection of H2O2 at a fairly mild potential of 0 V without any mediators, obtaining rather small apparent Michaelis‐Menten constant (KMapp) values of 113 μM for Hb/4‐CP/GCE and 101 μM for Cyt‐c/4‐CP/GCE. All the experimental results indicated that the covalent graft 4‐carboxyphenyl group plays an important role in constructing a “biocompatible bridge” to help the direct electron transfer of Hb and Cyt‐c with favorable biocompatibility and good bio‐ electrocatalytic affinity in virtue of the substituted aryl group only consisting of C, H and O elements, which is similar with the constitutes of organics. It makes the system of functionalized covalent immobilization of proteins onto carbon electrode a promising platform for fabricating the third‐generation biosensors. A new approach for realizing direct electrochemistry of proteins, as well as design of novel bioelectronic devices has been accordingly provided.  相似文献   

9.
龚静鸣  林祥钦 《中国化学》2003,21(7):761-766
Fe3O4 particles coated with acrylic copolymer (ACP) of about 5--8 nm in diameter were synthesized and used for immobilization of horseradish peroxidase (HRP). Direct electrochemistry of HRP embedded in the nanosized Fe304 solid matrix modified paraffin impregnated graphite electrode (PIGE) was achieved,which is related to the heine Fe(Ⅲ)/Fe(Ⅱ) conversion of HRP. Cyclic voltammetry gave a pair of reproducible and welldefined redox peaks at about Ea of -0.295 V vs. SCE. The standard rate constant k, was determined as 2.7 s^-1. It demonstrated that the nano-Fe3O4 solid matrix offers a friendly platform to assemble the HRP protein molecules and enhance the electron transfer rate between the HRP and the electrode. UV-Vis absorption spectra and WrIR spectra studies revealed that the embedded HRP retained its native-like structure. The HRP/Fe3O4/PIGE showed a strong catalytic activity toward H2O2. The voltammetric response was a linear function of H2O2 concentration in the range of 10-140μmol/L with detection limit of 7.3 μmol/L (s/n = 3 ). The apparent Michaelis-Menten constant is calculated to be 0.42 mmol/L.  相似文献   

10.
The direct electrochemistry of glucose oxidase (GOD) immobilized on the designed titanium carbide‐Au nanoparticles‐fullerene C60 composite film modified glassy carbon electrode (TiC‐AuNPs‐C60/GCE) and its biosensing for glucose were investigated. UV‐visible and Fourier‐transform infrared spectra of the resulting GOD/TiC‐AuNPs‐C60 composite film suggested that the immobilized GOD retained its original structure. The direct electron transfer behaviors of immobilized GOD at the GOD/TiC‐AuNPs‐C60/GCE were investigated by cyclic voltammetry in which a pair of well‐defined, quasi‐reversible redox peaks with the formal potential (E0′) of ‐0.484 V (vs. SCE) in phosphate buffer solution (0.05 M, pH 7.0) at the scan rate of 100 mV·s?1 were obtained. The proposed GOD modified electrode exhibited an excellent electrocatalytic activity to the reduction of glucose, and the currents of glucose reduction peak were linearly related to glucose concentration in a wider linearity range from 5.0 × 10?6 to 1.6 × 10?4 M with a correlation coefficient of 0.9965 and a detection limit of 2.0 × 10?6 M (S/N = 3). The sensitivity and the apparent Michaelis‐Menten constant (KMapp) were determined to be 149.3 μA·mM?1·cm?2 and 6.2 × 10?5 M, respectively. Thus, the protocol will have potential application in studying the electron transfer of enzyme and the design of novel electrochemical biosensors.  相似文献   

11.
Direct electron transfer of myoglobin (Mb) was achieved by its direct immobilization on carbon ionic liquid electrode (CILE) with a conductive hydrophobic ionic liquid, 1‐butyl pyridinium hexaflourophosphate ([BuPy][PF6]) as binder for the first time. A pair of well‐defined, quasi‐reversible redox peaks was observed for Mb/CILE resulting from Mb redox of heme Fe(III)/Fe(II) redox couple in 0.1 M phosphate buffer solution (pH 7.0) with oxidation potential of ?0.277 V, reduction potential of ?0.388 V, the formal potential E°′ (E°′=(Epa+Epc)/2) at ?0.332 V and the peak‐to‐peak potential separation of 0.111 V at 0.5 V/s. The average surface coverage of the electroactive Mb immobilized on the electrode surface was calculated as 1.06±0.03×10?9 mol cm?2. Mb retained its bioactivity on modified electrode and showed excellent electrocatalytic activity towards the reduction of H2O2. The cathodic peak current of Mb was linear to H2O2 concentration in the range from 6.0 μM to 160 μM with a detection limit of 2.0 μM (S/N=3). The apparent Michaelis–Menten constant (K and the electron transfer rate constant (ks) were estimated to be 140±1 μM and 2.8±0.1 s?1, respectively. The biosensor achieved the direct electrochemistry of Mb on CILE without the help of any supporting film or any electron mediator.  相似文献   

12.
A comparison of the analytical performances of four different (bio)sensor designs in H2O2 determination is discussed. The (bio)sensor designs developed were based on the use of (i) multiwalled carbon nanotubes (MWCNT), zinc oxide nanoparticles (ZnONP), prussian blue (PB); (ii) MWCNT, ZnONP, PB and ionic liquid (IL); (iii) MWCNT, ZnONP and horseradish peroxidase (HRP) and (iv) MWCNT, ZnONP, HRP and IL modified glassy carbon electrode (GCE). A performance comparison of (bio)sensors showed that the one based on HRP/IL-MWCNT-ZnONP/GCE showed the best analytical characteristics with a linear dynamic range of 9.99×10−8–7.55×10−4 M, detection limit of 1.37×10−8 M and sensitivity of 17.00 μA mM−1.  相似文献   

13.
Single‐wall carbon nanotubes (SWCNTs) were used as an immobilization matrix to incorporate [Ir(ppy)2(phen‐dione)](PF6) complex onto a glassy carbon electrode for the study of electrocatalytic reduction of periodate ion. Detailed preliminary electrochemical data for the Ir(III)‐complex in acetonitrile solution and for the modified GCE/SWCNTs/[Ir(ppy)2(phen‐dione)](PF6)/CGE are presented. The modified electrode was applied to selective amperometric detection of periodate through its electrocatalytic reduction to iodide at 0.200 V and pH 2.0. The use of amperometry resulted in two calibration plots over the concentration ranges of 1‐20 μM and 20‐450 μM, with a detection limit of 0.6 μM and sensitivity of 198 nA μM?1.  相似文献   

14.
《Electroanalysis》2018,30(2):274-282
Reduced Graphene oxide/ZnO nanoflowers ( rGO/ZnO‐NFs ) composite has been synthesized in‐situ using asymmetric Zn complex ( 1 ) as a single‐source molecular precursor (SSMP) with GO at 150 °C. The rGO/ZnO‐NFs composite was characterized by PXRD, UV‐vis, SEM, EDX mapping, TEM and SAED pattern to confirm its purity and morphology. The rGO/ZnO‐NFs composite shows uniform distribution of nanoflowers on graphene sheets. The modified glassy carbon electrode ( GCE ) was fabricated by drop wise layering of the rGO/ZnO‐NFs composite at the surface of the GCE without using binder. The binder free modified electrode ( GCE‐rGO/ZnO ) was explored for detection of nitroaromatics such as p‐nitro‐phenol ( p ‐NP ), 2,4‐dinitrophenol ( 2,4‐DNP ), 2,4‐dinitrotoluene ( 2,4‐DNT ) and 2,4,6‐trinitrophenol ( 2,4,6‐TNP ). The fabricated sensor showed remarkable response for the both toxicants and explosives. The LOD, sensitivity and linear range for the studied toxicants and explosives were found to be in a good range: p ‐NP= 0.93 μM, 240 μA mM−1 cm−2 and 0.2–0.9 mM; 2,4‐DNP= 6.2 μM, 203 μA mM−1 cm−2 and 0.1–0.9 mM; 2,4‐DNT= 10 μM, 371 μA mM−1 cm−2 and 0.2–0.9 mM; 2,4,6‐TNP= 16 μM, 514 μA mM−1 cm−2 and 0.2–0.9 mM, respectively.  相似文献   

15.
Electrochemical behavior of dopamine (DA) was investigated at the gold nanoparticles self‐assembled glassy carbon electrode (GNP/LC/GCE), which was fabricated by self‐assembling gold nanoparticles on the surface of L ‐cysteine (LC) modified glassy carbon electrode (GCE) via successive cyclic voltammetry (CV). A pair of well‐defined redox peaks of DA on the GNP/LC/GCE was obtained at Epa=0.197 V and Epc=0.146 V, respectively. And the peak separation between DA and AA is about 0.2 V, which is enough for simultaneous determination of DA and AA. The peak currents of DA and AA were proportional with their concentrations in the range of 6.0×10?8–8.5×10?5 mol L?1 and 1.0×10?6–2.5×10?3 mol L?1, with the detection limit of 2.0×10?8 mol L?1 and 3.0×10?7 mol L?1 (S/N=3), respectively. The modified electrode exhibits an excellent reproducibility, sensibility and stability for simultaneous determination of DA and AA in human serum with satisfactory result.  相似文献   

16.
We report an innovative supramolecular architecture for bienzymatic glucose biosensing based on the non‐covalently functionalization of multi‐walled carbon nanotubes (MWCNTs) with two proteins, glucose oxidase (GOx) (to recognize glucose) and avidin (to allow the specific anchoring of biotinylated horseradish peroxidase (b‐HRP)). The optimum functionalization was obtained by sonicating for 10 min 0.50 mg mL?1 MWCNTs in a solution of 2.00 mg mL?1 GOx+1.00 mg mL?1avidin prepared in 50 : 50 v/v ethanol/water. The sensitivity to glucose for glassy carbon electrodes (GCE) modified with MWCNTs‐GOx‐avidin dispersion and b‐HRP (GCE/MWCNTs‐GOx‐avidin/b‐HRP), obtained from amperometric experiments performed at ?0.100 V in the presence of 5.0×10?4 M hydroquinone, was (4.8±0.3) μA mM?1 (r2=0.9986) and the detection limit was 1.2 μM. The reproducibility for 5 electrodes using the same MWCNTs/GOx‐avidin dispersion was 4.0 %, while the reproducibility for 3 different dispersions and 9 electrodes was 6.0 %. The GCE/MWCNT‐GOx‐avidin/b‐HRP was successfully used for the quantification of glucose in a pharmaceutical product and milk.  相似文献   

17.
An ionic liquid (i.e., 1‐butyl‐3‐methylimidazolium hexafluorophosphate, BMIMPF6)‐single‐walled carbon nanotube (SWNT) gel modified glassy carbon electrode (BMIMPF6‐SWNT/GCE) is fabricated. At it the voltammetric behavior and determination of p‐nitroaniline (PNA) is explored. PNA can exhibit a sensitive cathodic peak at ?0.70 V (vs. SCE) in pH 7.0 phosphate buffer solution on the electrode, resulting from the irreversible reduction of PNA. Under the optimized conditions, the peak current is linear to PNA concentration over the range of 1.0×10?8–7.0×10?6 M, and the detection limit is 8.0×10?9 M. The electrode can be regenerated by successive potential scan in a blank solution for about 5 times and exhibits good reproducibility. Meanwhile, the feasibility to determine other nitroaromatic compounds (NACs) with the modified electrode is also tested. It is found that the NACs studied (i.e., p‐nitroaniline, p‐nitrophenol, o‐nitrophenol, m‐nitrophenol, p‐nitrobenzoic acid, and nitrobenzene) can all cause sensitive cathodic peaks under the conditions, but their peak potentials and peak currents are different to some extent. Their peak currents and concentrations show linear relationships in concentration ranges with about 3 orders of magnitude. The detection limits are 8.0×10?9 M for p‐nitroaniline, 2.0×10?9 M for p‐nitrophenol, 5.0×10?9 M for o‐nitrophenol, 5.0×10?9 M for m‐nitrophenol, 2.0×10?8 M for p‐nitrobenzoic acid and 8.0×10?9 M for nitrobenzene respectively. The BMIMPF6‐SWNT/GCE is applied to the determination of NACs in lake water.  相似文献   

18.
《中国化学会会志》2018,65(9):1127-1135
In this paper, a WS2 nanosheet was modified on the surface of a carbon ionic liquid electrode (CILE), and horseradish peroxidase (HRP) was further fixed on the electrode with a Nafion film. Direct electrochemistry and bioelectrocatalysis of HRP incorporated on the modified electrode were investigated in detail. On Nafion/HRP/WS2/CILE, a pair of well‐defined quasi‐reversible redox peaks appeared on the cyclic voltammogram, indicating that the presence of the WS2 nanosheet on the electrode surface could provide a specific interface with large surface area for HRP and its direct electron transfer rate was greatly enhanced. The formal potential (E0) obtained was –0.179 V, which was the typical feature of heme Fe(III)/Fe(II) in HRP. The electron transfer coefficient (α) and the heterogeneous electron transfer rate constant (ks) of HRP were calculated as 0.44 and 1.01 s–1, respectively. This HRP‐modified electrode showed excellent electrocatalytic activity for the reduction of trichloroacetic acid and NaNO2 with a wide linear range and low detection limit. Real samples were detected by this proposed method, indicating the successful fabrication of a new third‐generation electrochemical enzyme sensor utilizing the WS2 nanosheet.  相似文献   

19.
《Electroanalysis》2017,29(3):765-772
Stable magnetic nanocomposite of gold nanoparticles (Au‐NPs) decorating Fe3O4 core was successfully synthesized by the linker of Boc‐L‐cysteine. Transmission electron microscope (TEM), energy dispersive X‐ray spectroscopy (EDX) and cyclic voltammograms (CV) were performed to characterize the as‐prepared Fe3O4@Au‐Nps. The results indicated that Au‐Nps dispersed homogeneously around Fe3O4 with the ratio of Au to Fe3O4 nanoparticles as 5–10/1 and the apparent electrochemical area as 0.121 cm2. After self‐assembly of hemoglobin (Hb) on Fe3O4@Au‐Nps by electrostatic interaction, a hydrogen peroxide biosensor was developed. The Fe3O4@Au‐Nps/Hb modified GCE exhibited fast direct electron transfer between heme center and electrode surface with the heterogeneous electron transfer rate constant (Ks ) of 3.35 s−1. Importantly, it showed excellent electrocatalytic activity towards hydrogen peroxide reduction with low detection limit of 0.133 μM (S /D =3) and high sensitivity of 0.163 μA μM−1, respectively. At the concentration evaluated, the interfering species of glucose, dopamine, uric acid and ascorbic acid did not affect the determination of hydrogen peroxide. These results demonstrated that the introduction of Au‐Nps on Fe3O4 not only stabilized the immobilized enzyme but also provided large surface area, fast electron transfer and excellent biocompatibility. This facile nanoassembly protocol can be extended to immobilize various enzymes, proteins and biomolecules to develop robust biosensors.  相似文献   

20.
This study presents a sensitive voltammetric determination of terbutaline (TER) on a platform based on carbon nanotubes (CNTs) and europium oxide nanoparticles (Eu2O3NPs) coated glassy carbon electrodes (GCEs). An ultrasonic bath was performed for the preparation of composite material. The material was characterized by energy dispersive X‐ray spectroscopy (EDX), X‐ray diffraction method (XRD) and scanning electron microscopy (SEM). The Eu2O3NPs/CNTs/GCE system was assessed for the oxidation of terbutaline (TER). A broad oxidation peak was appeared at 0.71 V using a bare GCE. However, the voltammetry of TER has been improved at a GCE coated with CNTs and a well‐defined anodic peak exhibited at 0.61 V. Furthermore, the nanoparticles of Eu2O3 and CNTs coated GCE has greatly improved the electrochemical behaviour of TER and a sharp peak was appeared at 0.59 V. Cyclic voltammetry at Eu2O3NPs/CNTs/GCE also reveals a high catalytic effect for the oxidation of TER with an oxidation peak that is distinctly enhanced compared to GCE and CNTs/GCE. Eu2O3 nanoparticles were utilized to enhance the surface area of GCE and then improve the sensitivity of the procedure. The response of TER was linear over a concentration range of 2.0×10?8 M ?9.5×10?6 M with an LOD of 3.7×10?9 M. Square wave voltammetric analysis of tablets by Eu2O3NPs/CNTs/GCE yielded a recovery of 99.2 % with an RSD% of 3.2. The modified electrode (EuO2NPs/CNTs/GCE) provides accuracy and precision to the analysis of samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号