首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Three novel dyes of JJ1 , JJ2 , and JJ6 featured zinc porphyrin as a basic core structure; N, N‐alkyl‐4‐(prop‐1‐yn‐1‐yl)aniline as an electron donor linked to meso‐10‐position; 4‐(prop‐1‐yn‐1‐yl)benzoic acid as an electron acceptor linked to meso‐20‐position; and 2,6‐bis(dodecyloxy)phenyl or 2,6‐bis(octyloxy)phenyl respectively linked to meso‐5 and meso‐15‐positions of zinc porphyrin have been synthesized and used for dye‐sensitized solar cells. Porphyrin JJ6 featured the shortest alkyl group (─C4H9) on the donor, whereas JJ2 contained the longest alkyl groups (─C12H25), and JJ1 has a medium length of octyl groups. With these new porphyrin sensitizers, we observed that JJ6 has 7.55% power conversion efficiency under simulated one‐sun illumination (AM 1.5 G, 100 mW/cm2) with JSC = 18.64 mA/cm2, VOC = 0.66 V, and fill factor (FF) = 0.61, which was higher than the other two; JJ1 (7.35%) with JSC = 18.83 mA/cm2, VOC = 0.68 V, and FF = 0.60; and JJ2 (6.33%) with JSC = 15.69 mA/cm2, VOC = 0.62 V, and FF = 0.65. The power conversion efficiency of JJ6 and JJ1 were higher than JJ2 , demonstrating that the lengthy alkyl groups on the aniline cause a decrease in efficiency of the devices.  相似文献   

2.
Although the synthesis of mesoporous materials is well established, the preparation of TiO2 fiber bundles with mesostructures, highly crystalline walls, and good thermal stability on the RGO nanosheets remains a challenge. Herein, a low‐cost and environmentally friendly hydrothermal route for the synthesis of RGO nanosheet‐supported anatase TiO2 fiber bundles with dense mesostructures is used. These mesostructured TiO2‐RGO materials are used for investigation of Li‐ion insertion properties, which show a reversible capacity of 235 mA h g?1 at 200 mA g?1 and 150 mA h g?1 at 1000 mA g?1 after 1000 cycles. The higher specific surface area of the new mesostructures and high conductive substrate (RGO nanosheets) result in excellent lithium storage performance, high‐rate performance, and strong cycling stability of the TiO2‐RGO composites.  相似文献   

3.
Compositing amorphous TiO2 with nitrogen‐doped carbon through Ti? N bonding to form an amorphous TiO2/N‐doped carbon hybrid (denoted a‐TiO2/C? N) has been achieved by a two‐step hydrothermal–calcining method with hydrazine hydrate as an inhibitor and nitrogen source. The resultant a‐TiO2/C? N hybrid has a surface area as high as 108 m2 g?1 and, when used as an anode material, exhibits a capacity as high as 290.0 mA h g?1 at a current rate of 1 C and a reversible capacity over 156 mA h g?1 at a current rate of 10 C after 100 cycles; these results are better than those found in most reports on crystalline TiO2. This superior electrochemical performance could be ascribed to a combined effect of several factors, including the amorphous nature, porous structure, high surface area, and N‐doped carbon.  相似文献   

4.
Partially nanowire-structured TiO2 was prepared by a hydrothermal processing followed by calcination in air. The hydrogen titanate powder as-synthesized was calcined at 300 °C for 4 h to obtain the partially nanowire-structured TiO2. A dye-sensitized solar cell (DSC) with a film thickness of 5.6 μm, fabricated using the partially nanowire-structured TiO2 showed better performance than using a fully nanowire-structured TiO2 or a conventional equi-axed TiO2 nanopowder. The short-circuit current density (JSC), the open-circuit voltage (VOC), the fill factor (FF) and the overall efficiency (η) are 11.9 mA/cm2, 0.754 V, 0.673 and 6.01 %, respectively. The effects of one-dimensional nanostructure and electron expressway concept are discussed.  相似文献   

5.
A series of simple phenothiazine‐based dyes, namely, TP , EP , TTP , ETP , and EEP have been developed, in which the thiophene (T), ethylenedioxythiophene (E), their dimers, and mixtures are present to modulate dye aggregation, charge recombination, and dye regeneration for highly efficient dye‐sensitized solar cell (DSSC) applications. Devices sensitized by the dyes TP and TTP display high power conversion efficiencies (PCEs) of 8.07 (Jsc=15.2 mA cm?2, Voc=0.783 V, fill factor (FF)=0.679) and 7.87 % (Jsc=16.1 mA cm?2, Voc=0.717 V, FF=0.681), respectively; these were measured under simulated AM 1.5 sunlight in conjunction with the I?/I3? redox couple. By replacing the T group with the E unit, EP ‐based DSSCs had a slightly lower PCE of 7.98 % with a higher short‐circuit photocurrent (Jsc) of 16.7 mA cm?2. The dye ETP , with a mixture of E and T, had an even lower PCE of 5.62 %. Specifically, the cell based on the dye EEP , with a dimer of E, had inferior Jsc and Voc values and corresponded to the lowest PCE of 2.24 %. The results indicate that the photovoltaic performance can be finely modulated through structural engineering of the dyes. The selection of T analogues as donors can not only modulate light absorption and energy levels, but also have an impact on dye aggregation and interfacial charge recombination of electrons at the interface of titania, electrolytes, and/or oxidized dye molecules; this was demonstrated through DFT calculations, electrochemical impedance analysis, and transient photovoltage studies.  相似文献   

6.
Dye‐sensitized solar cells (DSSCs) based on CuII/I bipyridyl or phenanthroline complexes as redox shuttles have achieved very high open‐circuit voltages (VOC, more than 1 V). However, their short‐circuit photocurrent density (JSC) has remained modest. Increasing the JSC is expected to extend the spectral response of sensitizers to the red or NIR region while maintaining efficient electron injection in the mesoscopic TiO2 film and fast regeneration by the CuI complex. Herein, we report two new D‐A‐π‐A‐featured sensitizers termed HY63 and HY64 , which employ benzothiadiazole (BT) or phenanthrene‐fused‐quinoxaline (PFQ), respectively, as the auxiliary electron‐withdrawing acceptor moiety. Despite their very similar energy levels and absorption onsets, HY64 ‐based DSSCs outperform their HY63 counterparts, achieving a power conversion efficiency (PCE) of 12.5 %. PFQ is superior to BT in reducing charge recombination resulting in the near‐quantitative collection of photogenerated charge carriers.  相似文献   

7.
Mesoporous silica synthesized from the cocondensation of tetraethoxysilane and silylated carbon dots containing an amide group has been adopted as the carrier for the in situ growth of TiO2 through an impregnation–hydrothermal crystallization process. Benefitting from initial complexation between the titania precursor and carbon dot, highly dispersed anatase TiO2 nanoparticles can be formed inside the mesoporous channel. The hybrid material possesses an ordered hexagonal mesostructure with p6mm symmetry, a high specific surface area (446.27 m2 g?1), large pore volume (0.57 cm3 g?1), uniform pore size (5.11 nm), and a wide absorption band between λ=300 and 550 nm. TiO2 nanocrystals are anchored to the carbon dot through Ti?O?N and Ti?O?C bonds, as revealed by X‐ray photoelectron spectroscopy. Moreover, the nitrogen doping of TiO2 is also verified by the formation of the Ti?N bond. This composite shows excellent adsorption capabilities for 2,4‐dichlorophenol and acid orange 7, with an electron‐deficient aromatic ring, through electron donor–acceptor interactions between the carbon dot and organic compounds instead of the hydrophobic effect, as analyzed by the contact angle analysis. The composite can be photocatalytically recycled through visible‐light irradiation after adsorption. The narrowed band gap, as a result of nitrogen doping, and the photosensitization effect of carbon dots are revealed to be coresponsible for the visible‐light activity of TiO2. The adsorption capacity does not suffer any clear losses after being recycled three times.  相似文献   

8.
We demonstrate a unique synthetic route for oxygen‐deficient mesoporous TiOx by a redox–transmetalation process by using Zn metal as the reducing agent. The as‐obtained materials have significantly enhanced electronic conductivity; 20 times higher than that of as‐synthesized TiO2 material. Moreover, electrochemical impedance spectroscopy (EIS) and galvanostatic intermittent titration technique (GITT) measurements are performed to validate the low charge carrier resistance of the oxygen‐deficient TiOx. The resulting oxygen‐deficient TiOx battery anode exhibits a high reversible capacity (~180 mA h g?1 at a discharge/charge rate of 1 C/1 C after 400 cycles) and an excellent rate capability (~90 mA h g?1 even at a rate of 10 C). Also, the full cell, which is coupled with a LiCoO2 cathode material, exhibits an outstanding rate capability (>75 mA h g?1 at a rate of 3.0 C) and maintains a reversible capacity of over 100 mA h g?1 at a discharge/charge of 1 C/1 C for 300 cycles.  相似文献   

9.
In this work, high‐performance dye‐sensitized solar cells (DSSCs) based on new low‐cost visible nickel complex dye (VisDye), TiO2 nanoparticle/nanotube composites electrodes, carbon nanoparticles counter electrodes, and ionic liquids electrolytes have been fabricated. The electronic structure, optical spectroscopy, and electrochemical properties of the VisDye were studied. Experimental results indicate that it is beneficial to improve the electron transport and power conversion efficiency using the nickel complex VisDye and TiO2 nanoparticle/nanotube composites. Under optimized conditions, the solar energy conversion efficiencies were measured. The short‐circuit current density (JSC), the open‐circuit voltage (VOC), the fill factor (FF), and the overall efficiency (η) of the DSSCs are 10.01 mA/cm2, 516 mV, 0.68, and 3.52%, respectively. This study demonstrates that the combination of new VisDye with TiO2 nanoparticle/nanotube composites electrodes and carbon nanoparticles counter electrodes provide a way to fabricate highly efficient dye‐sensitized solar cells in low‐cost production.  相似文献   

10.
A series of dipolar donor–acceptor (D –A) chromophores with aminothiophene donor and different heterocyclic acceptor units is reported. By modulation of the acceptor strength, absorption bands over the whole visible spectrum are accessible as well as adjustment of the frontier molecular orbital levels. The performance of the chromophores in blends with fullerene acceptors in solution‐processed bulk heterojunction solar cells was studied and related to the molecular properties of the dyes. In particular, the effect of the large ground‐state dipole moments of these dyes was investigated by single crystal X‐ray analysis, which revealed antiparallel dimers, resulting in an annihilation of the dipole moments. This specific feature of supramolecular organization explains the excellent performance of merocyanine dyes in organic solar cells. With blends of HB366 :PC71BM, the most efficient solar cell with a VOC of 1.0 V, a JSC of 10.2 mA cm?2, and a power‐conversion efficiency of 4.5 % was achieved under standard AM1.5, 100 mW cm?2 conditions. Under reduced lighting conditions, even higher efficiencies up to 5.1 % was obtained.  相似文献   

11.
A dye‐sensitized solar cell (DSSC) containing a TiO2 film treated with COOH‐functionalized germanium nanoparticles (Ge COOH Nps) exhibited a higher short‐circuit photocurrent density (Jsc; 15.4 mA cm−2) compared to the corresponding untreated DSSC (13.4 mA cm−2) using N719 and a 12 μm thick TiO2 film at 100 mW cm−2. The amount of N719 attached to the treated TiO2 film was 21 % greater than that attached to the untreated TiO2 film. Enhancement of the Jsc value by 15 % was attributed mostly to an intramolecular charge transfer from N719 attached to the Ge COOH Nps to the TiO2 conduction band through the Ge COOH Nps.  相似文献   

12.
Subporphyrinatoboron(III) (SubB) sensitizers were synthesized for use in dye‐sensitized solar cells (DSSCs). The prototype, which comprises a sterically demanding 3,5‐di‐tert‐butylphenyl scaffold, a meso‐ethynylphenyl spacer, and a cyanoacrylic acid anchoring group, achieved an open‐circuit voltage VOC of 836 mV, short‐circuit current density JSC of 15.3 mA cm?2, fill factor of 0.786, and a photon‐to‐current conversion efficiency of 10.1 %. Such astonishing figures suggest that a bright future lies ahead for SubB in the realm of DSSCs.  相似文献   

13.
The photovoltaic performance of Sb2Se3‐sensitized heterojunction solar cells, which were fabricated by a simple deposition of Sb2Se3 on mesoporous TiO2 by an approach that features multiple cycles of spin coating with a single‐source precursor solution and thermal decomposition, is reported. Poly[2,6‐(4,4‐bis(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b;3,4‐b′]dithiophene)‐alt‐4,7(2,1,3‐benzothioadiazole)] was used as the hole‐transporting material. The most efficient cell exhibited a short‐circuit current density of 22.3 mA cm?2, an open‐circuit voltage of 304.5 mV, and a fill factor of 47.2 %, yielding a power conversion efficiency of 3.21 % under standard test conditions (irradiation of 1000 W m?2, air mass=1.5 G). The results of this study imply that the developed approach has a high potential as a simple and effective route for the fabrication of efficient and inexpensive solar cells.  相似文献   

14.
Mesoporous Li4Ti5O12 (LTO) thin film is an important anode material for lithium‐ion batteries (LIBs). Mesoporous films could be prepared by self‐assembly processes. A molten‐salt‐assisted self‐assembly (MASA) process is used to prepare mesoporous thin films of LTOs. Clear solutions of CTAB, P123, LiNO3, HNO3, and Ti(OC4H9)4 in ethanol form gel‐like meso‐ordered films upon either spin or spray coating. In the assembly process, the CTAB/P123 molar ratio of 14 is required to accommodate enough salt species in the mesophase, in which the LiI/P123 ratio can be varied between molar ratios of 28 and 72. Calcination of the meso‐ordered films produces transparent mesoporous spinel LTO films that are abbreviated as Cxxyyyzzz or CAxxyyyzzz (C=calcined, CA=calcined–annealed, xx=LiI/P123 molar ratio, and yyy=calcination and zzz=annealing temperatures in Celsius) herein. All samples were characterized by using XRD, TEM, N2‐sorption, and Raman techniques and it was found that, at all compositions, the LTO spinel phase formed with or without an anatase phase as an impurity. Electrochemical characterization of the films shows excellent performance at different current rates. The CA40‐350‐450 sample performs best among all samples tested, yielding an average discharge capacity of (176±1) mA h g?1 at C/2 and (139±4) mA h g?1 at 50 C and keeping 92 % of its initial discharge capacity upon 50 cycles at C/2.  相似文献   

15.
Dye-sensitized solar cells (DSSCs) based on CuII/I bipyridyl or phenanthroline complexes as redox shuttles have achieved very high open-circuit voltages (VOC, more than 1 V). However, their short-circuit photocurrent density (JSC) has remained modest. Increasing the JSC is expected to extend the spectral response of sensitizers to the red or NIR region while maintaining efficient electron injection in the mesoscopic TiO2 film and fast regeneration by the CuI complex. Herein, we report two new D-A-π-A-featured sensitizers termed HY63 and HY64 , which employ benzothiadiazole (BT) or phenanthrene-fused-quinoxaline (PFQ), respectively, as the auxiliary electron-withdrawing acceptor moiety. Despite their very similar energy levels and absorption onsets, HY64 -based DSSCs outperform their HY63 counterparts, achieving a power conversion efficiency (PCE) of 12.5 %. PFQ is superior to BT in reducing charge recombination resulting in the near-quantitative collection of photogenerated charge carriers.  相似文献   

16.
Panchromatic RuII sensitizers TF‐30–TF‐33 bearing a new class of 6‐quinolin‐8‐yl‐2,2′‐bipyridine anchor were synthesized and tested under AM1.5 G simulated solar irradiation. Their increased π conjugation relative to that of the traditional 2,2′:6′,2′′‐terpyridine‐based anchor led to a remarkable improvement in absorptivity across the whole UV–Vis–NIR spectral regime. Furthermore, the introduction of a bulky tert‐butyl substituent on the quinolinyl fragment not only led to an increase in the JSC value owing to the suppression of dye aggregation, but remarkably also resulted in no loss in VOC in comparison with the reference sensitizer containing a tricarboxyterpyridine anchor. The champion sensitizer in DSC devices was found to be TF‐32 with a performance of JSC=19.2 mA cm?2, VOC=740 mV, FF=0.72, and η=10.19 %. This 6‐quinolin‐8‐yl‐2,2′‐bipyridine anchor thus serves as a prototype for the next generation of RuII sensitizers with any tridentate ancillary.  相似文献   

17.
Phase‐pure anatase TiO2 nanofibers with a fiber‐in‐tube structure were prepared by the electrospinning process. The burning of titanium‐oxide‐carbon composite nanofibers with a filled structure formed as an intermediate product under an oxygen atmosphere produced carbon‐free TiO2 nanofibers with a fiber‐in‐tube structure. The sizes of the nanofiber core and hollow nanotube were 140 and 500 nm, respectively. The heat treatment of the electrospun nanofibers at 450 and 500 °C under an air atmosphere produced grey and white filled‐structured TiO2 nanofibers, respectively. The initial discharge capacities of the TiO2 nanofibers with the fiber‐in‐tube and filled structures and the commercial TiO2 nanopowders were 231, 134, and 223 mA h g?1, respectively, and their corresponding charge capacities were 170, 100, and 169 mA h g?1, respectively. The 1000th discharge capacities of the TiO2 nanofibers with the fiber‐in‐tube and filled structures and the commercial TiO2 nanopowders were 177, 64, and 101 mA h g?1, respectively, and their capacity retentions measured from the second cycle were 89, 82, and 52 %, respectively. The TiO2 nanofibers with the fiber‐in‐tube structure exhibited low charge transfer resistance and structural stability during cycling and better cycling and rate performances than the TiO2 nanofibers with filled structures and the commercial TiO2 nanopowders.  相似文献   

18.
We have synthesized and characterized four organic dyes ( 9 , 10 , H1 , H2 ) based on a 3,6‐disubstituted carbazole donor as sensitizers in dye‐sensitized solar cells. These dyes have high molar extinction coefficients and energy levels suitable for electron transfer from an electrolyte to nanocrystalline TiO2 particles. Under standard air mass 1.5 global (AM 1.5 G) solar irradiation, a device using dye H4 exhibits a short‐circuit current density (Jsc) of 13.7 mA cm?2, an open‐circuit voltage (Voc) of 0.68 V, a fill factor (FF) of 0.70, and a calculated efficiency of 6.52 %. This performance is comparable to that of a reference cell based on N719 (7.30 %) under the same conditions. After 1000 hours of visible‐light soaking at 60 °C, the overall efficiency remained at 95 % of the initial value.  相似文献   

19.
New hemicyanine dyes ( CM101 , CM102 , CM103 , and CM104 ) in which tetrahydroquinoline derivatives are used as electron donors and N‐(carboxymethyl)‐pyridinium is used as an electron acceptor and anchoring group were designed and synthesized for dye‐sensitized solar cells (DSSCs). Compared with corresponding dyes that have cyanoacetic acid as the acceptor, N‐(carboxymethyl)‐pyridinium has a stronger electron‐withdrawing ability, which causes the absorption maximum of dyes to be redshifted. The photovoltaic performance of the DSSCs based on dyes CM101 – CM104 markedly depends on the molecular structures of the dyes in terms of the n‐hexyl chains and methoxyl. The device sensitized by dye CM104 achieved the best conversion efficiency of 7.0 % (Jsc=13.4 mA cm?2, Voc=704 mV, FF=74.8 %) under AM 1.5 irradiation (100 mW cm?2). In contrast, the device sensitized by reference dye CMR104 with the same donor but the cyanoacetic acid as the acceptor gave an efficiency of 3.4 % (Jsc=6.2 mA cm?2, Voc=730 mV, FF=74.8 %). Under the same conditions, the cell fabricated with N719 sensitized porous TiO2 exhibited an efficiency of 7.9 % (Jsc=15.4 mA cm?2, Voc=723 mV, FF=72.3 %). The dyes CM101 – CM104 show a broader spectral response compared with the reference dyes CMR101 – CMR104 and have high IPCE exceeding 90 % from 450 to 580 nm. Considering the reflection of sunlight, the photoelectric conversion efficiency could be almost 100 % during this region.  相似文献   

20.
Recombining the advantages on photovoltaic parameters of two binary-organic photovoltaics (OPVs) into one ternary cell is an efficient strategy for selecting materials, in addition to the absorption spectra complementary among the used materials. The binary-OPVs with J71:BTP-4F-12 exhibit a power conversion efficiency (PCE) of 11.70%, along with a short-circuit-current-density (JSC) of 23.61 mA cm−2, an open-circuit-voltage (VOC) of 0.841 V and a fill factor (FF) of 58.99%. Although the relatively low PCE of 10.92% and JSC of 16.59 mA cm−2 are achieved in J71:ITIC-based binary-OPVs, the VOC of 0.935 V and FF of 70.40% are impressive compared with J71:BTP-4F-12-based OPVs. Optimal ternary-OPVs are achieved with J71:BTP-4F-12:ITIC as active layers by weight ratio of 1:0.48:0.72, delivering a markedly increased PCE of 13.05% with a VOC of 0.903 V, a JSC of 21.27 mA cm−2 and a FF of 68.20%. An over 11.5% PCE improvement is obtained by recombining the advantages of binary-OPVs into ternary-OPVs with ITIC as photon harvesting reinforcing agent and morphology regulator. The good compatibility between BTP-4F-12 and ITIC provides large room to well optimize their relative content for achieving the well balanced three key photovoltaic parameters of ternary-OPVs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号