首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An easily available and efficient chiral N,N′‐dioxide–nickel(II) complex catalyst has been developed for the direct catalytic asymmetric aldol reaction of α‐isothiocyanato imide with aldehydes which produces the products in morderate to high yields (up to 98 %) with excellent diastereo‐ (up to >99:1 d.r.) and enantioselectivities (up to >99 % ee). A variety of aromatic, heteroaromatic, α,β‐unsaturated, and aliphatic aldehydes were found to be suitable substrates in the presence of 2.5 mol % L ‐proline‐derived N,Ndioxide L5 –nickel(II) complex. This process was air‐tolerant and easily manipulated with available reagents. Based on experimental investigations, a possible transition state has been proposed to explain the origin of reactivity and asymmetric inductivity.  相似文献   

2.
α‐Hydroxy phosphonic acids and their derivatives are highly bioactive structural motifs. It is now reported that these compounds can be accessed through the copper‐catalyzed direct α‐oxidation of β‐ketophosphonates using in situ generated nitrosocarbonyl compounds as an electrophilic oxygen source. These reactions proceeded in high yields (up to 95 %) and enantioselectivities (up to >99 % ee) for both cyclic as well as acyclic substrates. This method was also applied for the synthesis of α,β‐dihydroxy phosphonates and β‐amino‐α‐hydroxy phosphonates.  相似文献   

3.
The asymmetric Kinugasa reaction was performed on pure water for the first time without the need for any organic co‐solvents. In contrast to most asymmetric Kinugasa reactions, trans‐β‐lactams were obtained as the major products in good yields, enantioselectivities, and diastereoselectivities (up to 90 % yield, 98 % ee, and >99:1 d.r.). This reaction is atom‐economical, environmentally friendly, and affords synthetically useful but challenging products.  相似文献   

4.
Highly enantioselective Michael addition of 1,3‐dicarbonyl compounds and nitromethane to 4‐oxo‐4‐arylbutenoates catalyzed by N,N′‐dioxide–Sc(OTf)3 complexes has been developed. Using 0.5–2 mol % catalyst loading, various α‐stereogenic esters were obtained regioselectively with excellent yields (up to 97 %) and enantioselectivities (up to >99 % ee). Moreover, the reaction performed well under nearly solvent‐free conditions. The products with functional groups are ready for further transformation, which showed the potential value of the catalytic approach. According to the experimental results and previous reports, a plausible working model has been proposed to explain the origin of the activation and the asymmetric induction.  相似文献   

5.
Highly enantioselective Diels–Alder (DA) and inverse‐electron‐demand hetero‐Diels–Alder (HDA) reactions of β,γ‐unsaturated α‐ketoesters with cyclopentadiene catalyzed by chiral N,N′‐dioxide–Cu(OTf)2 (Tf=triflate) complexes have been developed. Quantitative conversion of β,γ‐unsaturated α‐ketoesters and excellent diastereoselectivities (up to 99:1) and enantioselectivities (up to >99 % ee) were observed for a broad range of substrates. Both aromatic and aliphatic β,γ‐unsaturated α‐ketoesters were found to be suitable substrates for the reactions. Moreover, the chemoselectivity of the DA and HDA adducts were improved by regulating the reaction temperature. Good to high chemoselectivity (up to 94 %) of the DA adducts were obtained at room temperature, and moderate chemoselectivity (up to 65 %) of the HDA adducts were achieved at low temperature. The reaction also featured mild reaction conditions, a simple procedure, and remarkably low catalyst loading (0.1–1.5 mol %). A strong positive nonlinear effect was observed.  相似文献   

6.
A direct and convenient method has been developed for the synthesis of optically active pyrrolidines bearing a quaternary stereogenic center containing a CF3 group at the C‐3 position of the pyrrolidine ring. The synthesis system, CuI/Si‐FOXAP‐catalyzed exo‐selective 1,3‐dipolar cycloaddition of azomethine ylides with β‐CF3‐β,β‐disubstituted nitroalkenes, provides pyrrolidines with high diastereoselectivities (up to >98:2 d.r.) and excellent enantioselectivities (up to >99.9 ee) and performs well for a broad scope of substrates under mild conditions.  相似文献   

7.
8.
A direct catalytic asymmetric aldol‐type reaction of 3‐substituted‐2‐oxindoles with glyoxal derivatives and ethyl trifluoropyruvate, catalyzed by a chiral N,N′‐dioxide–Sc(OTf)3 (Tf=trifluoromethanesulfonyl) complex, has been developed that tolerates a wide range of substrates. The reaction proceeds in good yields and excellent enantioselectivities (up to 93 % yield, 99:1 diastereomeric ratio (dr), and >99 % enantiomeric excess (ee)) under mild conditions, to deliver 3‐(α‐hydroxy‐β‐carbonyl) oxindoles with vicinal quaternary–tertiary or quaternary–quaternary stereocenters. Even with 1 mol % catalyst loading or on scaleup (10 mmol of starting material), maintenance of ee was observed, which showed the potential value of the catalyst system. In studies probing the reaction mechanism, a positive nonlinear effect was observed and ScIII‐based enolate intermediates were detected by using ESIMS. On the basis of the experimental results and previous reports, a possible catalytic cycle was assumed.  相似文献   

9.
The rhodium‐catalyzed asymmetric hydrogenation of different enamides, in particular, dihydro‐β‐carboline derivates, was investigated in the presence of chiral phosphorus ligands. Enantioselectivities of up to 99 % ee were obtained after ligand screening and optimization of the reaction conditions. The scope and limitation of the catalysts were shown in the synthesis of optically active tetrahydro‐β‐carbolines and other benchmark N‐acyl‐1‐aryl ethylamines.  相似文献   

10.
A synergistic catalysis combination of chiral‐at‐metal rhodium complex and amine catalyst was developed for enantioselective alkylation of aldehydes with α,β‐unsaturated 2‐acyl imidazoles. The corresponding adducts were obtained in good yields with excellent enantioselectivities (up to 99% ee).  相似文献   

11.
N,N′‐Dioxide/nickel(II) complexes have been developed to catalyze the inverse‐electron‐demand hetero‐Diels–Alder reaction of β,γ‐unsaturated α‐ketoesters with acyclic enecarbamates. After detailed screening of the reaction parameters, mild optimized reaction conditions were established, affording 3,4‐dihydro‐2H‐pyranamines in up to 99 % yield, 99 % ee and more than 95:5 d.r. The catalytic system was also efficient for β‐substituted acyclic enecarbamates, affording more challenging 2,3,4‐trisubstituted 3,4‐dihydro‐2H‐pyranamine with three contiguous stereogenic centers in excellent yields, diastereoselectivities, and enantioselectivities. The reaction could be scaled up to a gram scale with no deterioration of either enantioselectivity or yield. Based on these experiments and on previous reports, a possible transition state was proposed.  相似文献   

12.
A highly enantioselective Pd‐catalysed decarboxylative asymmetric allylic alkylation of cyclopentanone derived α‐aryl‐β‐keto esters employing the (R,R)‐ANDEN‐phenyl Trost ligand has been developed. The product (S)‐α‐allyl‐α‐arylcyclopentanones were obtained in excellent yields and enantioselectivities (up to >99.9 % ee). This represents one of the most highly enantioselective formations of an all‐carbon quaternary stereogenic center reported to date. This reaction was demonstrated on a 4.0 mmol scale without any deterioration of enantioselectivity and was exploited as the key enantioselective transformation in an asymmetric formal synthesis of the natural product (+)‐tanikolide.  相似文献   

13.
Cyclic ketones bearing α‐quaternary stereocenters underwent efficient kinetic resolution using cyclohexanone monooxygenase (CHMO) from Acinetobacter calcoaceticus. Lactones possessing tetrasubstituted stereocenters were obtained with high enantioselectivity (up to >99 % ee) and complete chemoselectivity. Preparative‐scale biotransformations were exploited in conjunction with a SmI2‐mediated cyclization process to access complex, enantiomerically enriched cycloheptan‐ and cycloctan‐1,4‐diols. In a parallel approach to structurally distinct products, enantiomerically enriched ketones from the resolution with an α‐quaternary stereocenter were used in a SmI2‐mediated cyclization process to give cyclobutanol products (up to >99 % ee).  相似文献   

14.
α,β‐Unsaturated esters have been employed as substrates in iridium‐catalyzed asymmetric hydrogenation. Full conversions and good to excellent enantioselectivities (up to 99 % ee) were obtained for a broad range of substrates with both aromatic‐ and aliphatic substituents on the prochiral carbon. The hydrogenated products are highly useful as building blocks in the synthesis of a variety of natural products and pharmaceuticals.  相似文献   

15.
Chiral secondary alkylcopper reagents were prepared from chiral secondary alkyl iodides by a retentive I/Li exchange followed by a retentive transmetalation with CuBr?P(OEt)3. Switching the solvent to THF significantly increased their configurational stability and made these copper reagents suitable for regioselective allylic substitutions. The optically enriched copper species underwent SN2 substitutions with allylic bromides (up to >99 % SN2 regioselectivity). The addition of ZnCl2 and the use of chiral allylic phosphates allowed to switch the regioselectivity towards SN2′ substitution (up to >99 % SN2′ regioselectivity) and to perform highly selective anti‐SN2′ substitutions with absolute control over two adjacent stereocenters. This method was applied in the total synthesis of the three ant pheromones (+)‐lasiol, (+)‐13‐norfaranal, and (+)‐faranal (up to 98:2 dr, 99 % ee).  相似文献   

16.
Asymmetric transfer hydrogenation was applied to a wide range of racemic aryl α‐alkoxy‐β‐ketoesters in the presence of well‐defined, commercially available, chiral catalyst RuII–(Np‐toluenesulfonyl‐1,2‐diphenylethylenediamine) and a 5:2 mixture of formic acid and triethylamine as the hydrogen source. Under these conditions, dynamic kinetic resolution was efficiently promoted to provide the corresponding syn α‐alkoxy‐β‐hydroxyesters derived from substituted aromatic and heteroaromatic aldehydes with a high level of diastereoselectivity (diastereomeric ratio (d.r.)>99:1) and an almost perfect enantioselectivity (enantiomeric excess (ee)>99 %). Additionally, after extensive screening of the reaction conditions, the use of RuII‐ and RhIII‐tethered precatalysts extended this process to more‐challenging substrates that bore alkenyl‐, alkynyl‐, and alkyl substituents to provide the corresponding syn α‐alkoxy‐β‐hydroxyesters with excellent enantiocontrol (up to 99 % ee) and good to perfect diastereocontrol (d.r.>99:1). Lastly, the synthetic utility of the present protocol was demonstrated by application to the asymmetric synthesis of chiral ester ethyl (2S)‐2‐ethoxy‐3‐(4‐hydroxyphenyl)‐propanoate, which is an important pharmacophore in a number of peroxisome proliferator‐activated receptor α/γ dual agonist advanced drug candidates used for the treatment of type‐II diabetes.  相似文献   

17.
The synthesis of a series of aromatic amide‐derived non‐biaryl atropisomers with a phosphine group and multiple stereogenic centers is reported. The novel phosphine ligands exhibit high diastereo‐ and enantioselectivities (up to >99:1 d.r., 95–99 % ee) as well as yields in the silver‐catalyzed asymmetric [3+2] cycloaddition of aldiminoesters with nitroalkenes, which provides a highly enantioselective strategy for the synthesis of optically pure nitro‐substituted pyrrolidines. In addition, the experimental results with regard to the carbon stereogenic center as well as the amide stereochemistry confirmed the potential of hemilabile atropisomers as chiral ligand in catalytic asymmetric [3+2] cycloaddition reaction.  相似文献   

18.
The enantioselective synthesis of a series of C2‐symmetric 3,3′‐diarylated 1,1′‐spirobiindane‐7,7′‐diols (3,3′‐diaryl‐SPINOLs) was developed by sequential Rh‐catalyzed twofold asymmetric conjugate arylation/BF3‐promoted diastereoselective spirocyclization (>20:1 d.r. and >99 % ee for all examples). Some phosphoramidite ligands were prepared from the 3,3′‐Ph‐SPINOL and applied to several catalytic asymmetric reactions, and the 3,3′‐diarylated ligands showed higher enantioselectivities than the privileged nonsubstituted ligands.  相似文献   

19.
A highly enantioselective catalytic double‐Michael addition reaction of substituted benzofuran‐2‐ones with divinyl ketones promoted by readily accessible tertiary amine–thiourea Cinchona alkaloids has been developed. A number of optically enriched spirocyclic benzofuran‐2‐ones were prepared in very good yields (up to 99 %), diastereoselectivities (up to 19:1 d.r.), and very good enantioselectivities (up to 92 % ee). Density functional theory (DFT) calculations were performed to investigate the origin of stereoselectivity.  相似文献   

20.
Junhua Li  Daming Du 《中国化学》2015,33(4):418-424
Enantioselective synthesis of biologically active dihydropyrano[2,3‐c]pyrazoles has been achieved through a squaramide‐catalysed Michael addition/Thorpe‐Ziegler type cyclization cascade reaction between arylidenepyrazolones and malononitrile. A series of optically active dihydropyano[2,3‐c]pyrazoles were obtained in excellent yields (up to 99%) and moderate to good enantioselectivities (up to 79% ee) under mild reaction conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号