首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radicals generated by γ-irradiation of malonic acid and methyl malonic acid were studied as a function of temperature by inversion recovery, echo-detected saturation recovery and electron-electron double resonance (ELDOR) at X-band, and by continuous-wave saturation recovery at X-band and S-band. ELDOR reductions for malonic acid radical in polycrystalline and single-crystal samples indicate that nuclear spin relaxation is faster than both electron spin relaxation and cross relaxation between 93 and 233 K. Deuteration of the carboxylate protons caused the maximum ELDOR reduction to shift from about 110 to 150 K, consistent with the assignment of the rapid nuclear spin relaxation to hydrogen-bonded proton dynamics. ELDOR enhancements for both radicals formed in methyl malonic acid indicate that cross relaxation is faster than both electron spin relaxation and nuclear spin relaxation between 77 and 220 K. Enhanced cross relaxation and electron spin relaxation are attributed to the rotation of methyl groups at a rate comparable to the electron Larmor frequency. The temperature dependence of the enhancement of 1/T 1e was analyzed to determine the activation energies for methyl rotation. The same radical is formed in irradiated methyl malonic acid and L-alanine, but the barrier to rotation of the α-methyl is 500 K in the methyl malonic acid host and 1500 K in the L-alanine host, which indicates a large impact of the lattice on the barrier to rotation.  相似文献   

2.
Continuous-wave spectra at W-band of four triarylmethyl (trityl) radicals at 100 K in 1∶1 water-glycerol exhibit rhombic electron paramagnetic resonance spectra. The rigid-lattice line widths at W-band are only 3 to 5 times larger than at X-band or S-band, and fluid-solution line widths are much narrower than those for rigid lattice, which indicates that unresolved anisotropic nuclear hyperfine couplings make significant contributions to the rigid-lattice line widths. Spin-flip lines are observed in glassy-solution spectra at X-band and S-band, but not at W-band or 250 MHz. At 100 KT m is dominated by spin diffusion of solvent protons and is independent of microwave frequency. Between about 130 and 170 K, 1/T m for trityl-CH3 is enhanced by rotation of the methyl groups at a rate comparable to inequivalences in the hyperfine interaction. Motional averaging of anisotropic interactions enhances spin echo dephasing between about 200 and 300 K. The temperature dependence of 1/T 1 is similar for the four radicals and is consistent with assignment of the Raman process and a local mode as the dominant relaxation processes. The similarity inT 1 values at W-band and X-band supports this assignment.  相似文献   

3.
The temperature dependence, between 10 and 120 K, of electron spin-lattice relaxation at X-band was analyzed for a series of eight pyrrolate-imine complexes and for ten other copper(II) complexes with varying ligands and geometry including copper-containing prion octarepeat domain and S100 type proteins. The geometry of the CuN4 coordination sphere for pyrrolate-imine complexes with R=H, methyl, n-butyl, diphenylmethyl, benzyl, 2-adamantyl, 1-adamantyl, and tert-butyl has been shown to range from planar to pseudo-tetrahedral. The fit to the recovery curves was better for a distribution of values of T1 than for a single time constant. Distributions of relaxation times may be characteristic of Cu(II) in glassy solution. Long-pulse saturation recovery and inversion recovery measurements were performed. The temperature dependence of spin-lattice relaxation rates was analyzed in terms of contributions from the direct process, the Raman process, and local modes. It was necessary to include more than one process to fit the experimental data. There was a small contribution from the direct process at low temperature. The Raman process was the dominant contribution to relaxation between about 20 and 60 K. Debye temperatures were between 80 and 120 K. For samples with similar Debye temperatures the coefficient of the Raman process tended to increase as gz increased, as expected if modulation of spin-orbit coupling is a major factor in relaxation rates. Above about 60 K local modes with energies in the range of 260-360 K (180-250 cm-1) dominated the relaxation. For molecules with similar geometry, relaxation rates were faster for more flexible molecules than for more rigid ones. Relaxation rates for the copper protein samples were similar to rates for small molecules with comparable coordination spheres. At each temperature studied the range of relaxation rates was less than an order of magnitude. The spread was smaller between 20 and 60 K where the Raman process dominates, than at higher temperatures where local modes dominate the relaxation. Spin echo dephasing time constants, Tm, were calculated from two-pulse spin echo decays. Near 10 K Tm was dominated by proton spins in the surroundings. As temperature was increased motion and spin-lattice relaxation made increasing contributions to Tm. Near 100 K spin-lattice relaxation dominated Tm.  相似文献   

4.
The correlation functions of the side - groups and side ?chains of polymers are obtained for nuclear spin relaxation if the segmental motion of the polymers is described by VJGM model, these functions are derived from unequal two ?side and three -site jump internal rotation, diffusion internal rotation, restricted internal rotation and multiple internal rotation. The corresponding spectral density functions are also given, and these functions are used to interpret the nuclear spin relaxation data of the side-groups of some polymers. The average spectral density functions of side-groups are derived under the magic angle spinning, the correlation times and diffusion coefficients of the side-groups of crosslinked poly (methyl methacry-latcs) and solid poly(vinylbutyral) are obtained by using these average spectral density functions. The multiphase structures of nylon 6, poly (ethylenc glycol) and its complexes are investigated with cross ?polarization and magic angle spinning techniques.Three methods using  相似文献   

5.
Polycrystalline D-lactic acid lithium salt [(R)-2-hydroxypropanoic acid lithium salt, lithium D-lactate] has been investigated by pulsed proton magnetic resonance methods between 77 and 300 K at 25 MHz. The main relaxation mechanism is methyl rotation; the motion is characterized by an activation energy Ea = 14.5 +/- 0.5 kJ/mol and time factor tau 0 = (1.5 +/- 0.5) x 10(-13) s. The activation energy is higher than the potential barrier obtained by ESR and ENDOR techniques for methyl rotation in the lactate radical. The methyl rotation is also responsible for a reduction of the dipolar second moment. Below 100 K the reduction of the dipolar second moment is ascribed to quantum-mechanical tunneling; an excitation energy of 6.1 +/- 1 kJ/mol is derived from a contribution to the spin-lattice relaxation times from the tunneling.  相似文献   

6.
Electron spin-lattice relaxation rates, 1/T1, at X-band of nitroxyl radicals (4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl, 4-oxo-2,2,6,6-tetramethylpiperidin-1-oxyl, 3-carbamoyl-2,2,5,5-tetramethylpyrrolidin-1-oxyl and 3-carbamoyl-2,2,5,5-tetramethylpyrrolin-1-oxyl) in glass-forming solvents (decalin, glycerol, 3-methylpentane, o-terphenyl, 1-propanol, sorbitol, sucrose octaacetate, and 1:1 water:glycerol) at temperatures between 100 and 300K were measured by long-pulse saturation recovery to investigate the relaxation processes in slow-to-fast tumbling regimes. A subset of samples was also studied at lower temperatures or at Q-band. Tumbling correlation times were calculated from continuous wave lineshapes. Temperature dependence and isotope substitution (2H and 15N) were used to distinguish the contributions of various processes. Below about 100K relaxation is dominated by the Raman process. At higher temperatures, but below the glass transition temperature, a local mode process makes significant contributions. Above the glass transition temperature, increased rates of molecular tumbling modulate nuclear hyperfine and g anisotropy. The contribution from spin rotation is very small. Relaxation rates at X-band and Q-band are similar. The dependence of 1/T1 on tumbling correlation times fits better with the Cole-Davidson spectral density function than with the Bloembergen-Purcell-Pound model.  相似文献   

7.
The electron spin relaxation rates for the stable radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) doped into polystyrene were studied by inversion recovery and electron spin echo at X-band and Q-band between 20 and 295 K. At low concentration (340 μM, 0.01 %), spin–lattice relaxation was dominated by the Raman process and a local mode. At high concentration (140 mM, 5 %), relaxation is orders of magnitude faster than at the lower concentration, and 1/T 1 is approximately linearly dependent on the temperature. Spin lattice relaxation rates are similar at X-band and Q-band. The temperature dependence of spin echo dephasing was faster at about 140 K than at higher or lower temperatures, which is attributed to a wagging motion of the phenyl groups.  相似文献   

8.
Longitudinally modulated electron-nuclear double-resonance (LOMENDOR) investigations of CH3(COOH)CH· radicals in an irradiated single crystal of L-alanine have been performed over a temperature range from 203 to 313 K. First- and second-harmonic LOMENDOR, LOMESR, and variable-frequency LOMENDOR spectra have confirmed that cross relaxation due to random isotropic hyperfine coupling modulation via methyl group rotation is the dominant nuclear relaxation mechanism. The electron and nuclear relaxation times have been measured and the corresponding relaxation probabilities obtained. A comparison of the experimental and theoretical magnitudes of the cross-relaxation probability leads to the determination of the activation energy and correlation time for the rotation of the methyl group, which are in good agreement with values previously obtained by other methods.  相似文献   

9.
Electron spin lattice relaxation rates (1/T1) were measured as a function of temperature at two or three microwave frequencies for threeS = 1/2 species in temperature ranges with different dominant relaxation processes. Between 10 and 50 K the contribution from the direct process to the relaxation rate was substantially greater at 94 than at 9.5 GHz for a vanadyl porphyrin doped into zinc tetratolylporphyrin. For bis(diethyldithiocarbamato)copper(II) doped into the diamagnetic Ni(II) analog the relaxation rate between 25 and 100 K is dominated by the Raman process and exhibits little frequency dependence between 9.2 and 94 GHz. For 4-hydroxy-2,2,6,6-tetramethylpiperidinoloxy (tempol) doped into a diamagnetic host the relaxation rate between about 40 and 100 K is dominated by the Raman process. In this temperature range, relaxation rates at 3.2, 9.2, and 94 GHz exhibit little frequency dependence. Above about 130 K, the relaxation rate for tempol decreases in the order S-band s> X-band > W-band. The relaxation rates in this temperature range fit a model in which 1/T1 is dominated by a thermally activated process that is assigned as rotation of the methyl groups on the nitroxyl ring.  相似文献   

10.
Static gradient electron spin echo projection reconstruction imaging is favourable for X-band material science applications requiring temperature variation with a metal cryostat. To prevent imaging artefacts due to the high conduction electron diffusion coefficient in the preferred conduction direction of quasi-one-dimensional conductors, only pulsed gradient phase encoding for that direction can be tolerated. We present results of an appropriate cylindrical imaging scheme combining both methods. Conduction electron spin density images with 13 x 13 x 17 microm(3) volume element size or spin-lattice relaxation time images with inversion recovery sequence and 13 x 13 x 68 microm(3) volume element size are presented for fluoranthene radical cation salt single crystals of typical sizes of 0.4 x 0.4 x 1 mm(3).  相似文献   

11.
13C spin-lattice relaxation times in the laboratory frame, ranging from 1.4 to 36 h, have been measured on a suite of five natural type Ia and Ib diamonds at 4.7 T and 300 K. Each of the diamonds contains two types of fixed paramagnetic centers with overlapping inhomogeneous electron paramagnetic resonance (EPR) lines. EPR techniques have been employed to identify these defects and to determine their concentrations and relaxation times at X-band. Spin-lattice relaxation behavior of 13C in diamonds containing paramagnetic P1, P2, N2. and N3 centers are discussed. Depending on the paramagnetic impurity types and concentrations present in each diamond, three different nuclear spin-lattice relaxation (SLR) paths exist, namely that due to electron SLR mechanisms and two types of three-spin processes (TSPs). The one three-spin process (TSP1) involves a simultaneous transition of two electron spins belonging to the same hyperfine EPR line and a flip of a 13C spin, while the other process (TSP2) involves two electron spins belonging to different hyperfine EPR lines and a 13C spin. It is shown that the thermal contact between the 13C nuclear Zeeman and electron dipole-dipole interaction reservoirs is field dependent, thus forming a bottleneck in the 13C relaxation path due to TSP1 at high magnetic fields.  相似文献   

12.
Low-temperature (4-55 K) pulsed EPR measurements were performed with the magnetic field directed along the z-axis of the g-factor of the low-symmetry octahedral complex [(63)Cu(L-aspartate)(2)(H2O)2] undergoing dynamic Jahn-Teller effect in diaqua(L-aspartate)Zn(II) hydrate single crystals. Spin-lattice relaxation time T(1) and phase memory time T(M) were determined by the electron spin echo (ESE) method. The relaxation rate 1/T(1) increases strongly over 5 decades in the temperature range 4-55 K. Various processes and mechanisms of T(1)-relaxation are discussed, and it is shown that the relaxation is governed mainly by Raman relaxation processes with the Debye temperature Theta(D)=204 K, with a detectable contribution from disorder in the doped Cu(2+) ions system below 12 K. An analytical approximation of the transport integral I(8) is given in temperature range T=0.025-10Theta(D) and applied for computer fitting procedures. Since the Jahn-Teller distorted configurations differ strongly in energy (delta(12)=240 cm(-1)), there is no influence of the classical vibronic dynamics mechanism on T(1). Dephasing of the ESE (phase relaxation) is governed by instantaneous diffusion and spectral diffusion below 20 K with resulting rigid lattice value 1/T(0)(M)=1.88 MHz. Above this temperature the relaxation rate 1/T(M) increases upon heating due to two mechanisms. The first is the phonon-controlled excitation to the first excited vibronic level of energy Delta=243 cm(-1), with subsequent tunneling to the neighbor potential well. This vibronic-type dynamics also produces a temperature-dependent broadening of lines in the ESEEM spectra. The second mechanism is produced by the spin-lattice relaxation. The increase in T(M) is described in terms of the spin packets forming inhomogeneously broadened EPR lines.  相似文献   

13.
Temperature and magnetic field dependences of the 19F nuclear spin-lattice relaxation in a single crystal of LiYF4 doped with holmium are described by an approach based on a detailed consideration of the magnetic dipole-dipole interactions between nuclei and impurity paramagnetic ions and nuclear spin diffusion processes. The observed non-exponential long time recovery of the nuclear magnetization after saturation at intermediate temperatures is in agreement with predictions of the spin-diffusion theory in a case of the diffusion limited relaxation. At avoided level crossings in the spectrum of electron-nuclear states of Ho3 + ions, rates of nuclear spin-lattice relaxation increase due to quasi-resonant energy exchange between nuclei and paramagnetic ions in contrast to the predominant role played by electronic cross-relaxation processes in the low-frequency ac-susceptibility.  相似文献   

14.
Using X-band pulsed electron-spin resonance, we report the intrinsic spin-lattice (T1) and phase-coherence (T2) relaxation times in molecular nanomagnets for the first time. In Cr7M heterometallic wheels, with M=Ni and Mn, phase-coherence relaxation is dominated by the coupling of the electron spin to protons within the molecule. In deuterated samples T2 reaches 3 micros at low temperatures, which is several orders of magnitude longer than the duration of spin manipulations, satisfying a prerequisite for the deployment of molecular nanomagnets in quantum information applications.  相似文献   

15.
1H NMR spin-lattice relaxation time measurements have been carried out in [(CH3)4N]2SeO4 in the temperature range 389-6.6 K to understand the possible phase transitions, internal motions and quantum rotational tunneling. A broad T1 minimum observed around 280 K is attributed to the simultaneous motions of CH3 and (CH3)4N groups. Magnetization recovery is found to be stretched exponential below 72 K with varying stretched exponent. Low-temperature T1 behavior is interpreted in terms of methyl groups undergoing quantum rotational tunneling.  相似文献   

16.
Comparative analysis of pulsed electron spin resonance spectroscopy at X-band and at S-band indicates that despite the lower sensitivity at the lower frequency, electron spin echo spectroscopy at S-band provides valuable information on the electron-nuclear interactions in systems where the electron spin echo modulation is too small to study well at X-band. It is shown that independent experimental data on electron spin echo modulation and decay at both X-band and S-band put additional constraints on the structural parameters obtained by comparison of experimental and simulated nuclear modulation patterns, and can also help to elucidate the electron spin relaxation mechanism.  相似文献   

17.
The temperature dependencies of the 1H spin-lattice relaxation times T1 and of the proton NMR second moment M2 in the temperature range from about 90 to 420 K were measured for methyl cellulose, hydroxypropyl cellulose and hydroxypropyl methyl cellulose. The proton spin-lattice relaxation measurements reveal two minima due to the C3 reorientation of the methyl groups of the methoxy, methylenemethoxy or propylene oxide groups and the restricted motion of the segment of the polymer chain. The activation energy barriers for these motions were calculated.  相似文献   

18.
Electron spin relaxation times of a Nycomed triarylmethyl radical (sym-trityl) in water, 1:1 water:glycerol, and 1:9 water:glycerol were measured at L-band, S-band, and X-band by pulsed EPR methods. In H(2)O solution, T(1) is 17+/-1 micros at X-band at ambient temperature, is nearly independent of microwave frequency, and exhibits little dependence on viscosity. The temperature dependence of T(1) in 1:1 water:glycerol is characteristic of domination by a Raman process between 20 and 80 K. The increased spin-lattice relaxation rates at higher temperatures, including room temperature, are attributed to a local vibrational mode that modulates spin-orbit coupling. In H(2)O solution, T(2) is 11+/-1 micros at X-band, increasing to 13+/-1 micros at L-band. For more viscous solvent mixtures, T(2) is much shorter than T(1) and weakly frequency dependent, which indicates that incomplete motional averaging of hyperfine anisotropy makes a significant contribution to T(2). In water and 1:1 water:glycerol solutions continuous wave EPR linewidths are not relaxation determined, but become relaxation determined in the higher viscosity 1:9 water:glycerol solutions. The Lorentzian component of the 250-MHz linewidths as a function of viscosity is in good agreement with T(2)-determined contributions to the linewidths at higher frequencies.  相似文献   

19.
The rigid polycyclic nitrogen compound was considered as a test for the reliability of internuclear distances calculated by 1H-NMR spin-lattice relaxation rates. The ‘isotropic’ motional correlation time was calculated from 13C relaxation rates (τC = 0.11 ns at 298 K). Dipolar cross-relaxation rates were calculated by measuring non-, mono- and double-selective proton spin-lattice relaxation rates. All the experimental relaxation rates were thoroughly accounted for by dipolar pairwise interactions. Only at high temperatures a certain contribution from the spin rotational mechanism was apparent.  相似文献   

20.
C(59)N magnetic fullerenes were formed inside single-wall carbon nanotubes by vacuum annealing functionalized C(59)N molecules encapsulated inside the tubes. A hindered, anisotropic rotation of C(59)N was deduced from the temperature dependence of the electron spin resonance spectra near room temperature. Shortening of the spin-lattice relaxation time T(1) of C(59)N indicates a reversible charge transfer toward the host nanotubes above approximately 350 K. Bound C(59)N-C(60) heterodimers are formed at lower temperatures when C(60) is coencapsulated with the functionalized C(59)N. In the 10-300 K range, T(1) of the heterodimer shows a relaxation dominated by the conduction electrons on the nanotubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号