首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We investigate the temperature and energy on holographic screens for 4-dimensional axisymmetric black holes with the entropic force idea proposed by Verlinde. According to the principle of thermal equilibrium, the location of holographic screen outside the axisymmetric black hole horizon is not a equivalent radius surface. The location of isothermal holographic screen outside the axisymmetric black hole horizon is obtained. Using the equipartition rule, we derive the correction expression of energy of isothermal holographic screen. When holographic screens are far away the black hole horizon, the entropic force of charged rotating particles can be expressed as Newton’s law of gravity. When the screen crosses the event horizon, the temperature of the screen agrees with the Hawking temperature and the entropic force gives rise to the surface gravity for both of the black holes.  相似文献   

2.
Special solutions of the LTB family representing collapsing over-dense regions corresponding to asymptotically closed, open, or flat FRW models are found. These solutions may be considered as representing dynamical mass condensations leading to black holes immersed in a FRW universe. We study the dynamics of the collapsing region, and its density profile. The question of the strength of the central singularity and its nakedness, as well as the existence of an apparent horizon and an event horizon is dealt with in detail, shedding light to the notion of cosmological black holes. Differences to the Schwarzschild black hole are addressed.  相似文献   

3.
We apply the confluent Heun functions to study the resonant frequencies (quasispectrum), the Hawking radiation and the scattering process of scalar waves, in a class of spacetimes, namely, the ones generated by a Kerr–Newman–Kasuya spacetime (dyon black hole) and a Reissner–Nordström black hole surrounded by a magnetic field (Ernst spacetime). In both spacetimes, the solutions for the angular and radial parts of the corresponding Klein–Gordon equations are obtained exactly, for massive and massless fields, respectively. The special cases of Kerr and Schwarzschild black holes are analyzed and the solutions obtained, as well as in the case of a Schwarzschild black hole surrounded by a magnetic field. In all these special situations, the resonant frequencies, Hawking radiation and scattering are studied.  相似文献   

4.
We investigate the spin interaction and the gravitational radiation thermally allowed in a head-on collision of two rotating Hayward black holes. The Hayward black hole is a regular black hole in a modified Einstein equation, and hence it can be an appropriate model to describe the extent to which the regularity effect in the near-horizon region affects the interaction and the radiation. If one black hole is assumed to be considerably smaller than the other, the potential of the spin interaction can be analytically obtained and is dependent on the alignment of angular momenta of the black holes. For the collision of massive black holes, the gravitational radiation is numerically obtained as the upper bound by using the laws of thermodynamics. The effect of the Hayward black hole tends to increase the radiation energy, but we can limit the effect by comparing the radiation energy with the gravitational waves GW150914 and GW151226.  相似文献   

5.
We consider asymptotically-flat, static and stationary solutions of the Einstein equations representing Einstein–Maxwell space–times in which the Maxwell field is not constant along the Killing vector defining stationarity, so that the symmetry of the space-time is not inherited by the electromagnetic field. We find that static degenerate black hole solutions are not possible and, subject to stronger assumptions, nor are static, non-degenerate or stationary black holes. We describe the possibilities if the stronger assumptions are relaxed.  相似文献   

6.
I present the general exact solutions for nonextremal rotating charged black holes in the G?del universe of five-dimensional minimal supergravity theory. They are uniquely characterized by four nontrivial parameters: namely, the mass m, the charge q, the Kerr equal rotation parameter a, and the G?del parameter j. I calculate the conserved energy, angular momenta, and charge for the solutions and show that they completely satisfy the first law of black hole thermodynamics. I also study the symmetry and separability of the Hamilton-Jacobi and the massive Klein-Gordon equations in these Einstein-Maxwell-Chern-Simons-G?del black hole backgrounds.  相似文献   

7.
It is assumed that the singularities which occur in gravitational collapse are not visible from outside but are hidden behind an event horizon. This means that one can still predict the future outside the event horizon. A black hole on a spacelike surface is defined to be a connected component of the region of the surface bounded by the event horizon. As time increase, black holes may merge together but can never bifurcate. A black hole would be expected to settle down to a stationary state. It is shown that a stationary black hole must have topologically spherical boundary and must be axisymmetric if it is rotating. These results together with those of Israel and Carter go most of the way towards establishing the conjecture that any stationary black hole is a Kerr solution. Using this conjecture and the result that the surface area of black holes can never decrease, one can place certain limits on the amount of energy that can be extracted from black holes.  相似文献   

8.
The accretion process is being investigated onto some important black holes such as Born-Infeld-AdS black hole, non-linear charged black hole solution in AdS space-time and Einstein-Yang-Mills massive gravity in the presence of Born-Infeld nonlinear electrodynamics. We find out the relations of radial velocity, energy density and change of mass for mention black holes and analyze their behavior graphically for different values of equation of state parameters $\omega$. We also examine the relations for critical speed for these black holes. It is observed that for different state parameters different fluids exhibit different evolutions in black holes backgrounds. The energy density of some fluids is negative or positive near the black hole while other fluids become cause to increase or decrease in black hole mass.  相似文献   

9.
10.
It is well known that Hawking radiation can be treated as a quantum tunneling process of particles from the event horizon of black hole. In this paper, we attempt to apply the massive vector bosons tunneling method to study the Hawking radiation from the non-rotating and rotating dilaton black holes. Starting with the Proca field equation that govern the dynamics of massive vector bosons, we derive the tunneling probabilities and radiation spectrums of the emitted vector bosons from the static spherical symmetric dilatonic black hole, the rotating Kaluza-Klein black hole, and the rotating Kerr-Sen black hole. Comparing the results with the blackbody spectrum, we satisfactorily reproduce the Hawking temperatures of these dilaton black holes, which are consistent with the previous results in the literature.  相似文献   

11.
We study the scattering of massless Dirac fermions by Schwarzschild and Reissner-Nordstrm black holes. This is done by applying partial wave analysis to the scattering modes obtained after solving the massless Dirac equation in the asymptotic regions of the two black hole geometries. We successfully obtain analytic phase shifts, with the help of which the scattering cross section is computed. The glory and spiral scattering phenomena are shown to be present, as in the case of massive fermion scattering by black holes.  相似文献   

12.
Ambient magnetic fields are thought to play a critical role in black hole jet formation. Furthermore, dual electromagnetic signals could be produced during the inspiral and merger of binary black hole systems. In this paper, we derive the exact solution for the electromagnetic field occurring when a static, axisymmetric binary black hole system is placed in the field of two magnetic or electric monopoles. As a by-product of this derivation, we also find the exact solution of the binary black hole configuration in a magnetic or electric dipole field. The presence of conical singularities in the static black hole binaries represent the gravitational attraction between the black holes that also drag the external two monopole field. We show that these off-balance configurations generate no energy outflows.  相似文献   

13.
We investigate three-dimensional black hole solutions in the realm of pure and new massive gravity in 2+1 dimensions induced on a 2-brane embedded in a flat four-dimensional spacetime. There is no cosmological constant neither on the brane nor on the four-dimensional bulk. Only gravitational fields are turned on and we indeed find vacuum solutions as black holes in 2+1 dimensions even in the absence of any cosmological solution. There is a crossover scale that controls how far the three- or four-dimensional gravity manifests on the 2-brane. Our solutions also indicate that local BTZ and SdS3 solutions can flow to local four-dimensional Schwarzschild-like black holes, as one probes from small to large distances, which is clearly a higher dimensional manifestation on the 2-brane. This is similar to the DGP scenario where the effects of extra dimensions for large probed distances along the brane manifest.  相似文献   

14.
Asymptotic solutions of the Klein-Gordon equation in a region near the event horizon of a radiating rotating charged black hole are obtained by using generalized tortoise coordinates. The location of the event horizon and the Hawking temperature of the black hole are given. Both the horizon and the temperature depend on the angle and time, due to radiation. However, they are independent of the angle if either rotation or radiation vanishes. The treatment encompasses as special cases the results on a number of well-known black holes.  相似文献   

15.
We analyze certain aspects of BTZ black holes in massive theory of gravity. The black hole solution is obtained by using the Vainshtein and dRGT mechanism, which is asymptotically AdS with an electric charge. We study the Hawking radiation using the tunneling formalism as well as analyze the black hole chemistry for such system. Subsequently, we use the thermodynamic pressure-volume diagram to explore the efficiency of the Carnot heat engine for this system. Some of the important features arising from our solution include the non-existence of quantum effects, critical Van der Walls behaviour, thermal fluctuations and instabilities. Moreover, our solution violates the Reverse Isoperimetric Inequality and, thus, the black hole is super-entropic, perhaps which turns out to be the most interesting characteristics of the BTZ black hole in massive gravity.  相似文献   

16.
As a consequence of Birkhoff's theorem, the exterior gravitational field of a spherically symmetric star or black hole is always given by the Schwarzschild metric. In contrast, the exterior gravitational field of a rotating (axisymmetric) star differs, in general, from the Kerr metric, which describes a stationary, rotating black hole. In this paper I discuss the possibility of a quasi–stationary transition from rotating equilibrium configurations of normal matter to rotating bla ck holes.  相似文献   

17.
Using the relationship between the entropy and the Euler characteristic, an entropy density is introduced to describe the inner topological structure of the entropy of 4-dimensional axisymmetric black holes. It is pointed out that the density of entropy is determined by the singularities of the timelike Killing vector field of spacetime, and these singularities carry the topological numbers, Hopf indices and Brouwer degrees, which are topological invariants. At last, Kerr–Newman black hole as an example of axisymmetric black holes is given. What’s more, the entropy and the latent heat of the topological phase transition of the black hole mentioned above are calculated and the latent heat just lies in the range of the energy of gamma ray bursts. This work is supported in part by the NSFs of China under Grant No. 10575068 and of Shanghai Municipal Committee of Science and Technology under Grant No. 04ZR14059 and Shanghai Leading Academic Discipline Project under Project Number: T0104.  相似文献   

18.
We consider boson stars and black holes in scalar electrodynamics with a V-shaped scalar potential. The boson stars come in two types, having either ball-like or shell-like charge density. We analyze the properties of these solutions and determine their domains of existence. When mass and charge become equal, the space–times develop a throat. The shell-like solutions need not be globally regular, but may possess a horizon. The space–times then consist of a Schwarzschild-type black hole in the interior, surrounded by a shell of charged matter, and thus a Reissner–Nordström-type space–time in the exterior. These solutions violate black hole uniqueness. The mass of the black hole solutions is related to the mass of the regular shell-like solutions by a mass formula of the type first obtained within the isolated horizon framework.  相似文献   

19.
There are exact solutions to Einstein’s equations with negative cosmological constant that represent black holes whose event horizons are manifolds of negative curvature, the so-called topological black holes. Among these solutions there is one, the massless topological black hole, whose mass is equal to zero. Hod proposes that in the semiclassical limit the asymptotic quasinormal frequencies determine the entropy spectrum of the black holes. Taking into account this proposal, we calculate the entropy spectrum of the massless topological black hole and we compare with the results on the entropy spectra of other topological black holes.  相似文献   

20.
In analogy with the Meissner effect in (super) conductors, black holes expel stationary axisymmetric external fields when approaching the extreme state. This has been studied on magnetic fields in the literature. Using the recently obtained solution describing a rotating black hole surrounded by an axisymmetric thin annular disc, we show that the effect also applies to an external gravitational field. This note on “traditional” Prague subject is dedicated to Professor Jiří Bičák on the occasion of his 60th birthday.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号