首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A method of perturbative expansion of master equation is employed to study the dissipative properties of system and of atom in the two-photon Jaynes–Cummings model (JCM) with degenerate atomic levels. The numerical results show that the degeneracy of atomic levels prolongs the period of entanglement between the atom and the field. The asymptotic value of atomic linear entropy is apparently increased by the degeneration. The amplitude of local entanglement and disentanglement is suppressed. The better the initial coherence property of the degenerate atom, the larger the coherence loss.  相似文献   

2.
The alteration of atomic absorption via quantum coherence is observed in the degenerate two-level atomic system. It is shown that when the detuning of coupling field equals to that of probe light, i.e. two-photon resonance, the reduction of atomic absorption via electromagnetically induced transparency occurs. However, when we tune the coupling field to two-photon off-resonance, the enhancement of absorption is obtained for the probe field. The influences of one-photon detuning and intensity of coupling field on absorption are also experimentally demonstrated.  相似文献   

3.
In the presence of degenerate two-photon transitions the problem of the interaction between two two-level atoms and a single-mode is considered. Near resonance case, a closed form of the analytic solution for the wave function is obtained. The entanglement between an atom and field in the interacting system is studied by using the change in atomic and field entropies. The relationship between entropy changes and concurrence entanglement is discussed. Our results show that the behavior of the entropy change in agreement with the behavior of the concurrence to measure the entanglement between two subsystem structures.  相似文献   

4.
In this paper we consider a system of two two-level atoms interacting with a binomial field in an ideal cavity. We investigate the time evolution of the single atom entropy squeezing, atomic inversion and the linear entropy for the present system. Furthermore, the relationship between the entropy squeezing and the entanglement is investigated. It is shown that the amounts of the nonclassical effects exhibited in the entropy squeezing are dependent on the different initial conditions. The entropy squeezing can give information on the corresponding linear entropy.  相似文献   

5.
The dissipation of the field in the two-photonJaynes-Cummings model (JCM) with degenerate atomic levels was studied.The initial degenerate atomic state affects the field coherence loss,when the degenerate atom is initially in an equal probability superposition state,the field coherence loss is smallest,It is found that the degeneracy of the atomic level increases the period of entanglement between the atom and the field.When the degeneracy was considered,the coherence properties of the field could be affected by the reservoir qualitatively,if a nonlinear two-photon process is involved.This is different from the dissipation of one-photon JCM with degenerate atomic levels.  相似文献   

6.
The atomic decay for a two-level atom interacting with a single mode of electromagnetic tield is considered. For a chosen initial state, the exact solution of the master equation is found. Therefore, effect of the atomic damping on entanglement (purity loss), degree of entanglement by the negativity, mutual information and atomic coherence through the master equation are studied.  相似文献   

7.
In this paper we consider a system of two two-level atoms interacting with a single-mode quantized electromagnetic field in a lossless resonant cavity via l-photon-transition mechanism. The field and the atoms are initially prepared in the coherent state and the excited atomic states, respectively. For this system we investigate the entropy squeezing, the atomic variances, the von Neumann entropy and the atomic inversions for the single-atom case. Also we comment on the relationship between spin squeezing and linear entropy. We show that the amounts of the nonclassical effects exhibited in the entropy squeezing for the present system are less than those produced by the standard Jaynes-Cummings model. The entropy squeezing can give information on the corresponding von Neumann entropy. Also the nonclassical effects obtained from the asymmetric atoms are greater than those obtained from the symmetric ones. Finally, the entropy squeezing gives better information than the atomic variances only for the asymmetric atoms.  相似文献   

8.
The nonclassical squeezing effect emerging from a nonlinear coupling model (generalized Jaynes–Cummings model) of a two-level atom interacting resonantly with a bimodal cavity field via two-photon transitions is investigated in the rotating wave approximation. Various Bloch coherent initial states (rotated states) for the atomic system are assumed, i.e., (i) ground state, (ii) excited state, and (iii) linear superposition of both states. Initially, the atomic system and the field are in a disentangled state, where the field modes are in Glauber coherent states via Poisson distribution. The model is numerically tested against simulations of time evolution of the based Heisenberg uncertainty relation variance and Shannon information entropy squeezing factors. The quantum state purity is computed for the three possible initial states and used as a criterion to get information about the entanglement of the components of the system. Analytical expression of the total density operator matrix elements at t > 0 shows, in fact, the present nonlinear model to be strongly entangled, where each of the definite initial Bloch coherent states is reduced to statistical mixtures. Thus, the present model does not preserve the modulus of the Bloch vector.  相似文献   

9.
Atomic population dynamics and the non-classical properties of the field in the system consisting of a cascade three-level atom interacting non-resonantly with a single-mode field are investigated in the presence of a Kerr medium. The atom and the field are assumed to be in the upper state and the coherent state initially, respectively. It is found that an atomic transition transfer may occur by varying the initial field intensity under the condition of a reasonably large one-photon detuning. Varying the initial field intensity can also control the field statistics. Quasiprobability distribution Q-function of the field state is also calculate to reveal its relation to the field statistics and normal squeezing effect.  相似文献   

10.
In this paper, the effect of quantum interference on the entanglement of a driven V-type three-level atom and its spontaneous emission field was investigated by using the quantum entropy. The results indicate that, in the absence of quantum interference the atom and its spontaneous emission field are always entangled at the steady-state. But, in the presence of full quantum interference their steady-state entanglement depends on the atomic parameters. Specifically, with appropriate atomic parameters they can be entangled or disentangled at the steady-state. We realized that the steady-state entanglement is due to completely destructive nature of quantum interference. On the contrary, the steady-state disentanglement is due to instructive nature of quantum interference.  相似文献   

11.
位相损耗腔中简并双光子拉曼耦合系统中的熵特性   总被引:8,自引:0,他引:8       下载免费PDF全文
研究了简并双光子拉曼耦合过程中存在位相损耗时,光场原子系统线性熵、光场线性熵和原子线性熵的特性,讨论了原子相干性和光场平均光子数对各线性熵的影响.结果表明:由于位相损耗的存在使系统的线性熵除初始时刻为零外,其他时刻均大于零,且与原子初始状态无关,即原子相干性对系统线性熵没有影响.当原子初始处于激发态或基态时,原子线性熵呈现出较完美的周期性;而在原子初始处于激发态和基态的叠加态时,原子的线性熵始终为零.随光场平均光子数的增加,各线性熵均会增大. 关键词: 位相损耗 简并双光子拉曼耦合过程 线性熵  相似文献   

12.
We theoretically investigate optical bistability (OB) and multistability (OM) behaviour of a closed-loop configuration atomic system driven by a degenerate coupling- field and a degenerate probe field inside a unidirectional ring cavity. It is found that the OB and OM behaviour can be controlled by adjusting- the intensity and the frequency detuning of the coupling- field, respectively. Interestingly, our numerical results show that it is easy to realize the transition from OB to OM or vice versa by adjusting- the intensity of the coupling- field under a appropriate frequency detuning. The effect of the atomic cooperation parameter on the OB behaviour is also discussed.  相似文献   

13.
A driven three-level atom system in free-space is investigated. The quantum entropy between the three-level atom and its spontaneous field is calculated. The entanglement between them and the influence of the classical field Ω on the entanglement are studied. The result indicates that there is a steady entanglement between the three-level atom and its spontaneous field, and they cannot be disentangled even the classical field is very large. In addition, the entanglement of the k photons and q photons is studied, it shows the two field is entangled for short time evolution.  相似文献   

14.
The atomic coherence in a three-level Λ atom is studied, in which each optical transition is driven by a coherent field and the metastable states are coupled to each other via a microwave field. It’s shown that the atomic coherence crucially depends on the relative phase delay between the envelopes of the amplitudes of the three coupling fields. In particular, when the phase delay is adjusted to 0 or π, the maximal atomic coherence arises, while the maximal atomic coherence doesn’t occur once the phase delay is changed to π/2. The maximal atomic coherence is attributed to the trapping of the population in the lower sublevels.  相似文献   

15.
A.-S.F. Obada 《Physica A》2008,387(12):3065-3071
We construct a complete representation of the atomic information entropy of an arbitrary multi-level system. Our approach is applicable to all scenarios in which the quantum state shared by a single particle and fields is known. As illustrations we apply our findings to a single four-level atom strongly coupled to a cavity field and driven by a coherent laser field. In this framework, we discuss connections with entanglement frustration and entropic forms. We conclude by showing how the atomic information entropy can be extended to examine entanglement in multi-level atomic systems.  相似文献   

16.
We study the absorption spectra of a degenerate V-type atom, where a resonant driving field and a probe field drive different branches of transitions and a dc field is applied to drive the transition between two excited states. The effects of vacuum induced coherence (VIC) on the absorption spectra are investigated. It is demonstrated that in some special cases the VIC can lead to the depression of absorption and narrow resonance. The origin of these features are discussed. When the pump field and the dc field have the same intensity, it is interesting to find that the whole absorption spectrum comes mainly from the absorptions induced by the interferences among different transitions between dressed states.  相似文献   

17.
We propose an optical scheme to generate cluster states of atomic qubits, with each trapped in separate optical cavity, via atom-cavity-laser interaction. The quantum information of each qubit is encoded on the degenerate ground states of the atom, hence the entanglement between them is relatively stable against spontaneous emission. A single-photon source and two classical fields are employed in the present scheme. By controlling the sequence and time of atom-cavity-laser interaction, we show that the atomic cluster states can be produced deterministically.  相似文献   

18.
运用量子信息熵理论,研究了运动二能级原子与光场依赖强度纠缠下最佳熵压缩态的制备和控制;比较了分别从基于信息熵不确定关系和海森堡不确定关系出发得出的结果;分析了制备原子最佳熵压缩态的充要条件,并进行了数值验证.考察了场模结构参数对最佳熵压缩态的影响.结果表明,信息熵压缩是对原子压缩效应的高灵敏量度;控制原子与场的相互作用时间,斩断原子和场的纠缠,选择原子的相干性,调节系统的相对位相可制备原子最佳熵压缩态;控制场模结构参数,可获得持续的原子最佳熵压缩态. 关键词: 依赖强度耦合 场模结构参数 最佳熵压缩态  相似文献   

19.
As an important parameter, von Neumann entropy has been used to characterize the entanglement between atom and light field. We discussed the entanglement and nonclassicality evolution of an atom in a squeezed vacuum—a typical nonclassical field, and compare it with that of the coherent state. It shows that the atom-field entanglement in squeezed vacuum is much stronger and stabler than that in coherent state, whereas the nonclassicality of the light field depends on its initial status. This investigation is trying to find a new insight into the relation between entanglement of atom-field system and nonclassicality of light fields. The result shows that the entanglement between the atom and the field can be maintained well in the squeezed vacuum and this implies better control of atom and photon mutually.  相似文献   

20.
Following the method proposed by Kozlov et al. [Victor V. Kozlov, Yuri Rostovtsev, Marlan O. Scully, Phys. Rev. A 74 (2006) 063829], we have investigated the atomic coherence induced by incoherent pump and vacuum spontaneous decay process in a Λ type three-level atomic system. The system can be in a coherent population trapping state and multi-steady states in different conditions. Interestingly, two kinds of new states are derived from the system with different pumping rate and decaying rate. They are the “robust” steady state and the “weak” steady state. Under the action of pump field and vacuum reservoir, these two kinds of states exhibit stable or unstable characteristics, respectively. Moreover, by investigating the difference between these states, we reveal the mechanism of coherence excitation and level-population transition. The special feature of the Λ atomic system will promise fruitful applications in quantum optics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号