首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于裂缝谐振环结构的降频技术,首先设计了一种电尺寸较小的左手介质微带线单元,并根据电磁波在微带线上的传输和反射数据,分别计算了左手介质的有效介电常数和有效磁导率.之后针对左手介质八元阵列进行三维电磁仿真实验,结果表明该八元阵列在左手介质频段上具有独特的后向波效应,从而证实了该左手介质频段的存在.与传统的左手介质微带单元相比,阐述的左手介质单元的电尺寸减小了60%,而且结构简单,便于加工,适用于平面电路器件的小型化等应用研究工作. 关键词: 左手介质 小型化 双负特性 后向波特性  相似文献   

2.
In this paper, the reflection and transmission coefficients of multi-layer dielectric and metamaterial media are derived by transmission-line method. Then, it is applied to double periodic photonic crystal structure, which is composed of two thin dielectric layers sandwiched by two thin metamaterial layers. The results show the structure has a large passband and a monotonous symmetric rising band edges compared with that for a conventional photonic crystal structure. If a defect layer is introduced, the localized modes appear. Furthermore, the number of transmission peaks in the photonic crystal structure can be tuned by changing the thickness of the defect in the structure. This photonic crystal may find application to broadband reflectors and the multi-wavelength narrow band optical filters.  相似文献   

3.
The local resonant band gap and the negative bulk modulus of the acoustic metamaterial with Helmholtz resonators are strongly affected by the temperature of water. In this paper, the acoustic transmission line method (ATLM) is introduced to investigate the influences of the temperature of water on the local resonant band gap and the negative bulk modulus of the acoustic metamaterial. Results show that the relative variations of the local resonant band gap and the negative effective bulk modulus suffering from the change of the temperature of water are approximately equivalent and are up to about 11%. The reason is that the local resonant frequency is proportional to the sound speed of fluid which is strongly effects by the temperature of water. By achieving the unambiguous relationships between these unusual properties of the acoustic metamaterial and the temperature of water, we find that the temperature-controlled acoustic metamaterial with the active band gap and the active negative bulk modulus can be realized in theory. This idea opens a new avenue for the design of the tunable acoustic metamaterial that can modulate the acoustic wave propagation.  相似文献   

4.
均匀光纤布拉格光栅的反射偏振相关损耗特性   总被引:6,自引:0,他引:6  
研究了单模光纤布拉格光栅的偏振相关损耗(PDL)特性.运用耦合模理论和琼斯(Jones)矩阵提出了反射光的有效偏振相关损耗(PDLeff),并模拟r其随光栅参数和双折射量的变化性质.光栅反射光的偏振相关损耗在反射谱的带边处明显地表现出来,特别是带边比较陡峭时.结果表明,光栅的有效偏振相关损耗明显地依赖于光栅的结构参数和...  相似文献   

5.
孟繁义  吴群  吴健 《物理学报》2006,55(5):2194-2199
提出一种单元电尺寸小、工作频带宽、损耗小、结构简单的异向介质设计方案,在1.7—2.7 GHz上所设计的异向介质结构单元电尺寸小于0.035,相对带宽达到45.5%,在整个工作频带上单个结构单元传输损耗小于0.75 dB.对由上述异向介质单元构成的半无限大异向介质平板的电磁波反射、透射特性进行了数值仿真分析,并提取出了电磁波在该异向介质平板中传播时的波数、相速、折射率以及该异向介质平板的有效介电常数和有效磁导率等一系列电磁特性参数,仿真与计算结果表明复波数的实部、相速以及折射率的实部在1.7—2.7 GHz的范围上为负值,并且在相同频带上,有效介电常数和有效磁导率的实部同时为负值,从而有效地验证了“后向行波效应”、“负折射效应”、“双负效应”等异向介质特有的电磁特性,对上述异向介质的存在性给予有力证明. 关键词: 异向介质 宽频带 小单元 介质参数  相似文献   

6.
In this paper, we analyze the theoretical limits of a metamaterial-based converter with orthogonal linear eigenpolarizations that allow linear-to-elliptical polarization transformation with any desired ellipticity and ellipse orientation. We employ the transmission line approach providing a needed level of the design generalization. Our analysis reveals that the maximal conversion efficiency for transmission through a single metamaterial layer is 50 %, while the realistic reflection configuration can give the conversion efficiency up to 90 %. We show that a double layer transmission converter and a single layer with a ground plane can have 100 % polarization conversion efficiency. We tested our conclusions numerically reaching the designated limits of efficiency using a simple metamaterial design. Our general analysis provides useful guidelines for the metamaterial polarization converter design for virtually any frequency range of the electromagnetic waves.  相似文献   

7.
We theoretically investigate microwave transmission through a zero-index metamaterial loaded with dielectric defects. The metamaterial is impedance matched to free space, with the permittivity and permeability tending towards zero over a given frequency range. By simply varying the radii and permittivities of the defects, total transmission or reflection of the impinging electromagnetic wave can be achieved. The proposed defect structure can offer advances in shielding or cloaking technologies without restricting the object's viewpoint. Active control of the observed exotic transmission and reflection signatures can occur by incorporating tunable refractive index materials such as liquid crystals and BaSrTiO3.  相似文献   

8.
In this paper, we propose a chiral metamaterial structure that enables dual-band asymmetric transmission effect for different linearly polarized electromagnetic waves. The metamaterial is composed of metallic spirals with two split-ring resonators sandwiching a dielectric slab and connecting with via hole. Strong one-way transmission of two orthogonally polarized waves at different frequency bands has been confirmed through both full-wave simulation and test on fabricated prototype at the microwave band. Analysis also shows such asymmetric transmission can be attributed to the induced asymmetric current distributions in the spiral that support strong polarization conversion and cross-polarization transmission. By scaling down the metamaterial structure, the concept could also be utilized at other frequency bands, such as submillimeter or even terahertz band and find applications in designing one-way electromagnetic wave devices or polarization spectral filters.  相似文献   

9.
Bandpass filters are reported based on double-stacked metamaterial layers separated by an air gap for operation at terahertz frequencies. Several stacking configurations were investigated designed for a ~0.5 THz center frequency. The filters exhibited improved spectral transmission properties when compared with conventional ones based on single metamaterial layers. 3 dB bandwidth of ~78 GHz and sidelobe suppression ratio >16 dB were determined when symmetric or asymmetric double layers were stacked. We demonstrate that superior frequency selectivity can be achieved when metamaterial layers with different unit cells are used. Good agreement was found between measured and simulated transmission response.  相似文献   

10.
In this paper, a horn antenna filled with a metamaterial structure as lens inner the aperture is presented. Unlike conventional curve lenses, the lens is designed in the present work using a fully flat structure, which results in a great improvement for the directivity of the horn antenna based on the zero refraction characteristics of the metamaterial. In this structure, a periodic-structure metamaterial with three-layer metal grids is designed using the CST Microwave Studio for optimization and its zero refraction property is validated. For the characterization of the antenna, the electric-field distribution in radiation area, reflection parameter (S11), gain and radiation pattern are calculated. The results show that the gain of a wide flare angle horn antenna is enhanced with over 2 dB between 16.10–17.30 GHz after the metamaterial is utilized. Therefore, the metamaterial lens horn structure results in a miniaturized antenna design approach compared to the optimum conventional horn of the same aperture size and gain in the interested frequency band. PACS 78.70.Gq; 81.05.Zx; 84.40.Ba  相似文献   

11.
The characteristics of a three-mode coupling in a passive dielectric waveguide are investigated for the case of even TE modes. The index is assumed to have a doubly periodic harmonic variation in the propagation direction. By a singular perturbation procedure using multiple space scales, the coupled-mode equations governing the Bragg interactions are systematically deduced. The three-mode coupling causes a stop band in frequency and the characteristics of the resulting evanescent mode are analyzed. For a periodic dielectric waveguide of finite length, the three coupled-mode equations are solved subject to suitable boundary conditions to obtain the reflection and the transmission coefficients. The frequency response of the reflection and the transmission coefficients are investigated and compared with the results of the pair of corresponding two-mode couplings. Representative numerical results are presented to illustrate the characteristics of the interaction of the three modes.  相似文献   

12.
Periodic arrays of resonant shunted piezoelectric patches are employed to control the wave propagation in a two-dimensional (2D) acoustic metamaterial. The performance is characterized by the finite element method. More importantly, we propose an approach to solving the conventional issue of the nonlinear eigenvalue problem, and give a convenient solution to the dispersion properties of 2D metamaterials with periodic arrays of resonant shunts in this article. Based on this modeling method, the dispersion relations of a 2D metamaterial with periodic arrays of resonant shunted piezos are calculated. The results show that the internal resonances of the shunting system split the dispersion curves, thereby forming a locally resonant band gap. However, unlike the conventional locally resonant gap, the vibrations in this locally resonant gap are unable to be completely localized in oscillators consisting of shunting inductors and piezo-patches.  相似文献   

13.
The optical absorber with Fano response is valuable for various applications such as solar cells or optical sensors. In this paper, we have modeled an optical plasmonic metamaterial absorber which contains a broken cross as an elementary cell along with four rectangular loads to improve the absorbance and achieve a Fano response within a wide bandwidth at 190–245 THz (25%). The bandwidth of the proposed structure is more than conventional metamaterial absorbers. The prototype absorber has a remarkable enhancement in the electric field in comparison with the simple cross model and the reflection value has reduced to ??47 dB. The parametric studies show how the gap capacitance controls the bandwidth, resonance frequency and the reflection value of the absorber, therefore we can consider this technique as a way to enhance the metamaterial absorber’s bandwidth. The proposed structure can be used as an optical refractive index sensor while the Fano line-shape provides a higher figure of merit (FOM) compared with many others. For this structure, the FOM has obtained as 10,660. The Finite Integration Technique with Perfect Boundary Approximation used for the simulation.  相似文献   

14.
C波段平面异向介质设计及其后向波特性验证   总被引:2,自引:0,他引:2       下载免费PDF全文
孟繁义  吴群  吴健 《物理学报》2006,55(5):2200-2205
提出了一种工作在C波段的新型平面结构异向介质,它除了带宽宽和损耗小外,还具有体积小、结构简单的优点,而且能够实现工作频段的平移,频率平移范围为4—20 GHz.基于电磁波由自由空间入射半无限大异向介质平板的传输和反射数据,计算出了电波在其中传播时的相速随频率的变化曲线,结果表明所讨论的异向介质确实在预想的频段上表现出后向波特性;同时利用相位观察法进一步验证了上述的后向波特性,从而肯定了异向介质的存在. 关键词: 异向介质 宽频带 小单元 后向波特性  相似文献   

15.
We report on microwave experiments with a metamaterial composed of pairs of metallic crosses. The transmission properties of the structure show a left-handed transmission band at frequencies around 10.2 GHz. The validity of the negative effective index of refraction is verified by a Snell’s law refraction experiment performed on a wedge-shaped sample of the metamaterial. A second measurement of a similar wedge made from blank FR4 boards is done for reference. The results of the measurements show positive refraction over the whole measured frequency band for the FR4 wedge as well as the refraction of the incident radiation to negative angles within the designated left-handed frequency band for the metamaterial sample.  相似文献   

16.
采用光学传输矩阵方法,研究了由各向异性左、右手材料交替排列构成的一维人工周期结构的带隙结构和传输特性,讨论了反射率随入射角度的变化关系。结果表明,含各向异性左手材料的光子晶体比传统的光子晶体有更宽的禁带;含各向异性左手材料的一维光予晶体具有更好的角度特性,可以用来实现对某一低频波段的全方位反射;通过适当选取左手材料的参数,禁带中会出现狭窄的透射峰。  相似文献   

17.
We present a comparative study on the acoustic tunneling through artificial periodical composites, from phononic crystals to acoustic metamaterials. We find that the features of the acoustic tunneling are closely related with the origins of band gaps. In particular, the band gap associated with the negative effective material parameter in the metamaterial results in a better analog of the tunneling effect to the quantum system.  相似文献   

18.
In this letter, we introduce a one-dimensional photonic crystal (1DPC) structure with a uniaxial metamaterial defect layer. It is proposed to control the transmitted wave of the defect mode by adjusting the orientation of the optical axis and incidence angle for both polarization states. The 4 × 4 transfer matrix method was employed to calculate the transmittance spectrum of the proposed structure. It is shown that the photonic band gaps, the intensity and the peak wavelength of the defect mode depends on the polarization, the orientation of the optical axis and the incidence angle of the wave, due to the strong anisotropy of the metamaterial. The transmittance spectrum curves at different optical axes of the uniaxial metamaterial and the distinct incidence angles are illustrated graphically. It is shown that the defect mode appears as a peak in the transmission spectrum. Pronounced contrasts in the intensity, wavelength positions of the defect mode and photonic band gap were demonstrated depending on the incidence angle and the orientation of the optical axis of the uniaxial metamaterial defect layer for both polarizations. Our structure offers a great variety of possibilities for designing and controlling the transmitted intensity of the defect mode.  相似文献   

19.
Fiber Bragg Gratings (FBGs) attract great attention due to their present and prospective applications in fiber-optical communication systems and modern opto-electronics. FBGs are components having a wide range of applications in the fields of communication, lasers and sensors. This study is a theoretical study in the field of FBG. Our aim is, by using coupled-mode theory and changing-of-index variation function, to model the FBG and to elucidate the appropriate parameters of FBG. Diffraction spectra of a FBG and its first and second degrees were obtained. Maximum reflection of FBGs versus saturation coefficient was also examined.  相似文献   

20.
A cross-shaped photonic crystal waveguide formed by a square lattice Al_2O_3 rods array is numerically and experimentally investigated. The band gap of the TE mode for the photonic crystals and transmission characteristics of waveguides are calculated by the plane wave expansion method and the finite element method.We perform the experiments in the microwave regime to validate the numerical results. The measured reflection and transmission characteristics of the photonic crystals show a large band gap between 8.62 and 11.554 GHz(relative bandwidth is 29.34%). The electromagnetic waves are transmitted stably in the waveguides, and the transmission characteristics maintain a high level in the band gap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号