首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 365 毫秒
1.
l-alanine 2-furoic acid (LA2FA), a novel organic third order nonlinear optical material was grown by slow solvent evaporation technique at room temperature. The grown single crystals were characterized by XRD, spectral, thermal, optical, dielectric and third order nonlinear properties. LA2FA crystallizes into triclinic system with the space group P1. The cell parameters are found to be a = 3.97 Å, b = 7.09 Å, c = 10.69 Å, α = 73.61°, β = 83.57°, γ = 84.21° and V = 286 Å3. The modes of vibrations of different molecular groups present in LA2FA were identified by FTIR studies. The optical transparency of the grown crystals was investigated by UV–visible spectrum. The absorption spectrum reveals that the crystal has a high UV cut off of 245 nm and photonic band gap of 2.5 eV. The scanning electron microscope (SEM) study has been carried out to determine the surface morphology of the grown crystal. The thermal behavior of the crystal investigated using thermo gravimetric (TG) and differential thermal analysis (DTA) indicates that the material does not decompose before melting. The third order NLO property was studied in detail by z-scan technique.  相似文献   

2.
A series of l-amino acids, isoleucine, valine, glutamine, methionine, arginine, cystine and aspargine are employed to form picrates with picric acid (1:1). A comparison of cell parameters reveals that expected picrates are formed only in the case of l-valine and l-isoleucine. l-Isoleucinium picrate (LIP), a new nonlinear optical material was grown from aqueous medium by the slow evaporation of equimolar mixture of l-isoleucine and picric acid. The structure of the grown crystal as determined by single crystal XRD diffraction analysis reveals that it belongs to the monoclinic system with space group P21 and the cell parameter values are, a = 9.970(3) Å; b = 6.425(2) Å; c = 12.871(4) Å; β = 109.54(3)°; V = 770.0(4) Å3; Z = 2. The presence of functional groups in the LIP is confirmed by FT-IR vibrational patterns and the good crystallinity indicated by powder X-ray diffraction method. The relative second harmonic generation (SHG) efficiency measurements reveal that the LIP is a highly efficient nonlinear optical (NLO) material having an activity 16 times as that of the reference material potassium dihydrogen phosphate. The optical transparency has been studied using UV–vis spectrophotometer and the absorption is minimum in the visible region. Thermogravimetric and differential thermal analyses reveal the purity of the sample and no decomposition is observed up to the melting point.  相似文献   

3.
Nonlinear optical (NLO) materials are useful in many of the industrial applications. New NLO chalcone derivative (2E)-3-[4-(methylsulfanyl)phenyl]-1-(4-nitrophenyl)prop-2-en-1-one (4N4MSP) crystals have been grown by slow evaporation technique at ambient temperature. The grown crystals were subjected to single crystal X-ray diffraction study. The crystal has noncentrosymmetric structure in the orthorhombic system with space group Aba2 and unit cell parameters a=14.0647(15) Å, b=33.738(4) Å and c=6.0039(6) Å. To confirm the presence of various functional groups in the compound, FT-IR spectrum was recorded. The crystal was subjected to TGA/DTA analysis to find its thermal stability. The grown crystals were characterized for their optical transmission and mechanical hardness. The second harmonic generation (SHG) efficiency of the crystal is obtained by classical powdered technique using Nd:YAG laser and its value is 28.57 times that of urea. The laser damage threshold for 4N4MSP crystal was determined using Q-switched Nd:YAG laser. The refractive index values for green and red wavelengths were measured by Brewster angle technique. The dielectric and electrical measurements were carried out to study the different polarization mechanism and conductivity of the crystal. Good thermal, mechanical, transmission and SHG response make it desirable for the NLO applications.  相似文献   

4.
The potential organic nonlinear optical single crystal of 2,3-dimethoxy-10-oxostrychnidinium hydrogen oxalate dihydrate has been grown by slow evaporation solution growth technique (SEST) using ethanol–water solution at room temperature. The powder X-ray diffraction study reveals that the crystal belongs to orthorhombic system with non-centrosymmetric space group P212121 and the cell parameters are a = 7.61 Å, b = 10.73 Å, c = 29.49 Å, V = 2410.75 Å3. The functional groups of the synthesized compound have been identified by FT-Raman and FTIR analyses. Photoluminescence spectroscopy study is determined to explore its efficacy towards device fabrications. Birefringence measurement has been carried out in order to analyze the optical homogeneity of the grown crystal. The optical constants such as reflectance (R) and extinction coefficient (K) have been determined from the transmittance data. The relative second harmonic efficiency of the compound is found to be 4 times greater than that of KDP. DTA-DSC measurements indicate that the crystal is thermally stable up to 174 °C.  相似文献   

5.
A novel layered hydrotalcite-like material, Co7(H2O)2(OH)12(C2H4S2O6), has been prepared hydrothermally and the structure determined using single crystal X-ray diffraction (a=6.2752(19) Å, b=8.361(3) Å, c=9.642(3) Å, α=96.613(5)°, β=98.230(5)°, γ=100.673(5)°, R1=0.0551). The structure consists of brucite-like sheets where 1/6 of the octahedral sites are replaced by two tetrahedrally coordinated Co(II) above and below the plane of the layer. Ethanedisulfonate anions occupy the space between layers and provide charge balance for the positively charged layers. The compound is ferrimagnetic, with a Curie temperature of 33 K, Curie-Weiss θ of −31 K, and a coercive field of 881 Oe at 5 K.  相似文献   

6.
A new non-linear optical material, glycine lithium chloride, was synthesized and single crystals were grown by slow evaporation solution growth technique at constant temperature from its aqueous solution. Transparent and well-crystallized hexagonal prisms were obtained by controlled evaporation at a constant temperature of 45 °C. The grown crystals were characterized by X-ray diffraction methods, Fourier transforms infrared spectroscopy, and optical absorption spectrum. Single crystal X-ray diffraction analysis revealed that the crystal lattice of glycine lithium chloride is hexagonal with unit cell a = b = 7.023 Å, c = 5.478 Å, α = β = 90°, γ = 120°, V = 234 Å3. The dielectric response of the crystal with varying frequencies was studied. The second harmonic generation efficiency of the crystal was studied and is found to be larger than KDP.  相似文献   

7.
The ligands 4,4,4-trifluoro-1-phenyl-1,3-butanedione (Hbfa) and 1,10-phenanthroline (phen) were used to prepare ternary lanthanide (Ln) complexes [Dy(bfa)3phen and Tm(bfa)3phen]. Crystal data: Dy(bfa)3phen C42H26F9N2O6Dy, triclinic, P1¯, a=9.9450(6) Å, b=14.0944(9) Å, c=14.6043(9) Å, α=82.104(1)°, β=87.006(1)°, γ=76.490(1)°, V=1971.1(2) Å3, Z=2; Tm(bfa)3phen C42H26F9N2O6Tm, triclinic, P1¯, a=9.898(5) Å, b=13.918(5) Å, c=14.753(5) Å, α=83.517(5)°, β=86.899(5)°, γ=76.818(5)°, V=1965.3(14) Å3, Z=2. The coordination number of the central Ln3+ (Ln=Dy, Tm) ion is eight, with six oxygen atoms from three Hbfa ligands and two nitrogen atoms from the phen ligand. The photophysical properties of the two complexes were studied by absorption spectra, diffuse reflectance spectra, and emission spectra. They show the characteristic luminescence of the corresponding Ln3+ ion in both visible and near-IR (NIR) region. Additionally, the energy transfer mechanisms between the ligands and central Ln3+ ions were discussed.  相似文献   

8.
This article presents the vibrational, dielectric, mechanical and thermal properties of 2,6-diaminopyridine-4-nitrophenolate-4-nitrophenol co-crystals (DAP:NP) grown by slow evaporation solution growth technique. It crystallizes in orthorhombic noncentrosymmetric space group Pna21 with cell dimension a=10.86 Å, b=12.00 Å and c=13.53 Å; α=β=γ=90° with V=1764 Å3. Functional groups present in the molecule have been identified from FTIR study. Dielectric constant (εr), dielectric loss (tanδ) and ac conductivity (σac) behaviors of the crystals have been studied at different temperatures. Presence of piezoelectric resonance peaks at lower frequency in dielectric measurements may increase the electro-optic coefficient of the crystals. Mechanical strength and its parameters of the grown crystals have been determined by Vickers microhardness test. TG/DTA analysis shows the melting point of the material is 150 °C and it undergoes two stages of decomposition.  相似文献   

9.
The present communication deals with the synthesis, single crystal growth and characterization of a new nonlinear optical material l-proline strontium chloride monohydrate (l-PSCM). Single crystals have been grown using the slow solvent evaporation technique. Single crystal XRD analysis confirmed that the crystal belongs to the orthorhombic structure with lattice parameter a=6.6966(3) Å, b=12.4530(5) Å, c=15.2432(5) Å and space group P212121. Presence of various functional groups in l-PSCM and protonation of the ions were confirmed by Fourier transform infrared spectroscopy (FT-IR) analysis. The melting point of the single crystal was found to be 126 °C using DSC. Ultraviolet-visible spectral analyses showed that the crystal has low UV cut-off at 226 nm combined with very good transparency of 90% in a wide range. The optical band gap was estimated to be 5.82 eV. Capacitance and dielectric-loss measurements were carried out at different temperatures in the frequency range 1 kHz-2 MHz. The dielectric constant and loss factor were found to be 21 and 0.03 at 1 kHz at room temperature, respectively. Microhardness mechanical studies show that hardness number (Hv) increases with load for l-PSCM single crystals the by Vickers microhardness method. Second harmonic generation (SHG) efficiency was found to be 0.078 times the value of KDP.  相似文献   

10.
A new organic nonlinear optical material 1-(4-fluorostyryl)-4-nitrostilbene (FNS) has been synthesized and single crystals of FNS were grown using solvent evaporation solution growth technique (SESGT) by 2-butanon solvent. Single crystal x-ray diffraction analysis reveals the unit cell parameters of the grown crystal are a = 9.494(4) Å, b = 9.864(2) Å, c = 19.501(7) Å and it belongs to monoclinic system with noncentrosymmetric space group. Optical transmittance of the grown crystal has been studied by UV-Vis-NIR spectrum. The optical properties of FNS have been studied by means of optical transmittance measurements in the wavelength range of 190–1100 nm The optical constants were calculated from the optical transmittance (T) data such as refractive index (n), extinction coefficient (k) and reflectance (R). The optical band gap (Eg) of FNS is 3.27 eV with direct transition. The complex dielectric (?) constant of the grown FNS crystal was determined. The second harmonic generation (SHG) efficiency of the grown FNS crystal has been studied by using Kurtz-Perry powder technique and it shows 12 times relatively greater than KDP.  相似文献   

11.
A new compound, K4(SO4)(HSO4)2(H3AsO4) was synthesized from water solution of KHSO4/K3H(SO4)2/H3AsO4. This compound crystallizes in the triclinic system with space group P1¯ and cell parameters: a=8.9076(2) Å, b=10.1258(2) Å, c=10.6785(3) Å; α=72.5250(14)°, β=66.3990(13)°, γ=65.5159(13)°, V=792.74(3) Å3, Z=2 and ρcal=2.466 g cm−3. The refinement of 3760 observed reflections (I>2σ(I)) leads to R1=0.0394 and wR2=0.0755. The structure is characterized by SO42−, HSO4 and H3AsO4 tetrahedra connected by hydrogen bridge to form two types of dimer (H(16)S(3)O4?S(1)O42− and H(12)S(2)O4?H3AsO4). These dimers are interconnected along the [1¯ 1 0] direction by the hydrogen bonds O(3)-H(3)?O(6). They are also linked by the hydrogen bridge assured by the hydrogen atoms H(2), H(3) and H(4) of the H3AsO4 group to build the chain S(1)O4?H3AsO4 which are parallel to the “a” direction. The potassium cations are coordinated by eight oxygen atoms with K-O distance ranging from 2.678(2) to 3.354(2) Å.Crystals of K4(SO4)(HSO4)2(H3AsO4) undergo one endothermic peak at 436 K. This transition detected by differential scanning calorimetry (DSC) is also analyzed by dielectric and conductivity measurements using the impedance spectroscopy techniques. The obtained results show that this transition is protonic by nature.  相似文献   

12.
The crystal structure evolution of the Sr2GdRuO6 complex perovskite at high-temperature has been investigated over a wide temperature range between 298 K≤T≤1273 K. Powder X-ray diffraction measurements at room temperature and Rietveld analysis show that this compounds crystallizes in a monoclinic perovskite-type structure with P21/n (#14) space group and the 1:1 ordered arrangement of Ru5+ and Gd3+ cations over the six-coordinate M sites, with lattice parameters a=5.81032(8) Å, b=5.82341(4) Å, c=8.21939(7) Å, V=278.11(6) Å3 and angle β=90.311(2)o. The high-temperature analysis shows that this material suffers two-phase transitions. At 373 K it adopts a monoclinic perovskite structure with I2/m space group, and lattice parameters a=5.81383(2) Å, b=5.82526(4) Å, c=8.22486(1) Å, V=278.56(2) Å3 and angle β=90.28(2)o. Above of 773 K, it suffers a phase transition from monoclinic I2/m to tetragonal I4/m, with lattice parameters a=5.84779(1) Å, c=8.27261(1) Å, V=282.89(5) Å3 and angle β=90.02(9)o. The high-temperature phase transition from monoclinic I2/m to tetragonal I4/m is characterized by strongly anisotropic displacements of the anions.  相似文献   

13.
The chemical preparation, the calorimetric studies and the crystal structure are given for two new organic sulfates NH3(CH2)5NH3SO4 1.5H2O (DAP-S) and NH3(CH2)9NH3SO4·H2O (DAN-S). DAP-S is monoclinic P21/n with unit cell dimensions: a=11.9330(2) Å; b=10.9290(2) Å; c=17.5260(2) Å; β=101.873(1)°; V=2236.77(6) Å3; and Z=8. Its atomic arrangement is described as inorganic layers of units and water molecules separated by organic chains. DAN-S is monoclinic P21/c with unit cell parameters: a=5.768(2) Å; b=25.890(10) Å; c=11.177(5) Å; β=115.70(4)°; V=1504.0(11) Å3 and Z=4. Its structure exhibits infinite chains, parallel to the [100] direction where the organic cations are interconnected. In both structures a network of strong and weak hydrogen bonds connects the different components in the building of the crystal.  相似文献   

14.
Octacalcium phosphate (OCP) powder was produced by precipitating 250 mL Ca(CH3COO)2 0.04 M into 750 L of phosphate solution (5 mmol Na2HPO4 and 5 mmol NaH2PO4) at a constant temperature of 60 °C and pH 5, which resulted in a dry white powder. X-ray diffraction (XRD), transmission electron microscopy (TEM) analysis, and the electron diffraction pattern (SAED) all showed only OCP. Hydroxyapatite (HAP) was directly obtained through hydrolysis of the powder. The total transformation of OCP into HAP was registered over a period of 6 h. During the first 30 min of hydrolysis both phases coexisted. The two phases and the OCP-HAP interface were structurally analyzed through XRD and TEM. OCP parameters (calculated by the Rietveld method) are a=19.70, b=9.50, c=6.85 Å; α=90.03°, β=92.48°, γ=108.32° (triclinic P-1) with average crystal size of 13.5±0.2 nm, while HAP parameters were a=9.45, c=6.87 Å (hexagonal P63/m) with average crystal size of 16.9±0.2 nm.  相似文献   

15.
The synthesis and crystal structure of the bis (3-dimethylammonium-1-propyne) pentabromobismuthate(III) salt are given in the present paper. After an X-ray investigation, it has been shown that the title compound crystallizes at 298 K in a centrosymmetric monoclinic system, in the space group C2/c with the following lattice parameters a=12.9034(3) Å, b=19.4505(6) Å, c=8.5188(2) Å, β=102.449(2). Not only were the impedance spectroscopy measurements of (C5H10N)2BiBr5 carried out from 209 Hz to 5 MHz over the temperature range of 318 K–373 K, but also its ac conductivity evaluated. Besides, the dielectric relaxation was examined using the modulus formalism. Actually, the near values of activation energies obtained from the impedance and modulus spectra confirms that the transport is of an ion hopping mechanism, dominated by the motion of the H+ ions in the structure of the investigated material.  相似文献   

16.
We previously determined the crystal structures of the high temperature phases of KH2PO4 [J.A. Subramony, S. Lovell, B. Kahr, Chem. Mater. 10 (1998) 2053. [6]]. These triclinic and monoclinic phases were obtained by heating the room temperature tetragonal form until new crystal phases were identified by polarization microscopy. These samples were subsequently cooled to room temperature thereby preserving the metastable high temperature phases for analysis. KD2PO4 is distinct from KH2PO4 in that it crystallizes at room temperature in a monoclinic phase unknown for its isotopomer, therefore the question as to whether it would support the corresponding high temperature phases remained open until our report here of the transformation of monoclinic KD2PO4 to an isomorphous triclinic high temperature phase: space group P with a=7.475(1) Å, b=7.440(1) Å, c=7.184(1) Å, α=88.53(1) Å, β=86.81(1)°, γ=88.09(1)°, V=398.58 Å3. This is the first known high temperature phase of DKDP, a material coveted at room temperature for its optical properties.  相似文献   

17.
Two novel complexes of Sm(III) and Dy(III) with mixed oxydiacetate (ODA) and 1,10-phenanthroline (phen) ligands were synthesized and their structure and luminescence properties were characterized. The complexes of [Ln(ODA)(phen)·4H2O]Cl·5H2O [Ln=Sm and Dy] crystallize in the monoclinic space group P21/n with Sm: a=12.3401(14) Å, b=16.821(2), c=12.6847(11) Å, β=107.939(10)°, V=2505.0(5) Å3, Z=4 and ρ=1.841 mg/m3, and with Dy: a=12.289(7) Å, b=16.805(6) Å, c=12.705(4) Å, β=108.144(18)°, V=2493.4(19) Å3, Z=4 and ρ=1.786 mg/m3. The complexes of [Sm(ODA)(phen)·4H2O]+ and [Dy(ODA)(phen)·4H2O]+ excited by UV light produce orange red and lightly white emissions, respectively, via the nonradiative energy transfer from phen to the metals. The quantum yield of the sensitized luminescence of [Dy(ODA)(phen)·4H2O]+ (Q=19%) is much greater than that of [Sm(ODA)(phen)·4H2O]+ (Q=1.4%). The luminescence decay times of the complexes were in a few microsecond range and independent of temperature.  相似文献   

18.
A new molecular solid, [1-(4′-bromo-2′-fluorobenzyl)-4-dimetylaminopyridinium]-bis(maleonitriledithiolato)nickel(III), (BrFBzPyN(CH3)2(Ni(mnt)2)(1), has been prepared and characterized by elemental analyses, IR, ESI-MS spectra, single crystal X-ray diffraction and magnetic measurements. Compound 1 crystallizes in the orthorhombic space group Pnma, a=20.579(4) Å, b=7.078(1) Å, c=17.942(4) Å, α=β=γ=90°, V=2613.3(9) Å3, Z=4. The Ni(III) ions of 1 form a quasi-one-dimensional Zigzag magnetic chain within a Ni(mnt)2 column through Ni?S, S?S, Ni?Ni, or π?π interactions with an Ni?Ni distance of 4.227 Å. Magnetic susceptibility measurements in the temperature range 2-300 K show that 1 exhibits a spin-gap transition around 200 K, and antiferromagnetic interaction in the high-temperature phase (HT) and spin gap in the low-temperature phase (LT). The transition for 1 is second-order phase transition as determined by DSC analyses.  相似文献   

19.
Single crystals of glycine nitrate [(C2H6NO2)+ · (NO3)] were grown using submerged seed solution method. The crystals were characterized by using single crystal X-ray diffraction and density measurements. Spectroscopic, thermal and optical studies were carried out for analyzing the presence of the functional groups, thermal stability, decomposition and transparency of the sample. These studies showed that the crystals are thermally stable upto 145 °C and transparent for the fundamental and second harmonic generation of Nd:YAG (λ = 1064 nm) laser. Second harmonic generation (SHG) conversion efficiency was investigated to explore the NLO characteristics of this material. Microhardness and dielectric studies were also carried out.  相似文献   

20.
Crystals of strontium malonate (SrC3H2O4) were grown in silica gel by the single diffusion technique. The thermo gravimetric (TG), differential thermal analysis (DTA) and differential scanning calorimetric (DSC) studies were carried out to investigate the thermal stability of the crystal. The dielectric behavior of the title compound crystal was investigated by measuring the dielectric parameters - dielectric constant, dielectric loss and AC conductivity as a function of four frequencies −1 kHz, 10 kHz, 100 kHz and 1 MHz at temperatures ranging from 50 to 170 °C. Results indicate that the title compound is thermally stable up to about 409 °C and is a promising low εr-value dielectric material. The magnetic behavior of the crystal was also explored using a vibrating sample magnetometer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号