共查询到18条相似文献,搜索用时 83 毫秒
1.
彩绘文物是文化遗产研究的重要内容之一。目前,许多的化学、光谱以及数字成像等分析技术应用于彩绘文物研究中,其中,高光谱成像技术集光谱分析与成像技术为一体,具有无损、快速成像以及"图谱合一"的特点。其技术特点使得高光谱成像技术在非接触、无样本的条件下对彩绘文物进行无损研究,既可以获得彩绘文物的整体形貌特征,还可以深入分析彩绘文物的光谱特征,是高光谱成像技术相比于其他彩绘文物研究方法的独特优势。利用高光谱成像技术研究彩绘文物分为数据采集、数据分析以及数据应用三步,其中数据分析与数据应用是研究的主要内容。通过对高光谱成像技术在彩绘文物中的相关研究成果进行总结归纳,其数据处理方法主要包括高光谱数据降维、光谱特征参量化、光谱解混合以及分类方法四个方面,并分别描述了四类处理方法的主要功能、常用方法和已有案例。从具体应用方向上,可归纳为视觉增强、隐含信息挖掘、保护监测和颜料分析四类,具体描述了四类应用方向所涵盖的内容以及所解决的问题。最后对相关研究中存在的挑战和发展前景进行了总结和展望。 相似文献
2.
3.
二维过渡金属硫化物(TMDC)材料因为独特的激子效应和材料学性质,在太阳电池、光催化、传感器、柔性电子器件等领域得到广泛的应用。层数对其性质有显著的调控作用,自动检测识别所需层数的样品是其从实验室走进半导体制造工业的重要技术需求。本文结合反射高光谱成像技术与图像处理算法,发展了一种二维TMDC薄层样品的显微成像自动检测技术。基于自主搭建的反射高光谱成像系统,对制备的不同层数TMDC标准样品进行了光学对比度的系统研究,阐明了层数的差分反射光谱机理,提出了可靠的层数判定方法。基于传统边缘检测技术优化设计了一套图像处理算法,实现了TMDC样品的图像检测及层数鉴定。本文方法具有普遍性、实用性,结合自动对焦的扫描控制,能够实现大规模的自动化样品检测,这也为其他表面目标的显微识别和检测提供了新的灵感和参考。 相似文献
4.
基于近红外高光谱成像技术的小麦不完善粒检测方法研究 总被引:1,自引:0,他引:1
小麦作为主要的粮食作物在我国农业生产、运输、食品加工等方面占有重要地位。不完善籽粒严重影响了小麦质量与粮食安全。不完善籽粒主要在生产、存储、包装等过程中产生,目前我国小麦质量检测多以人工分选为主,但存在人主观性较强,肉眼易疲劳,且费时费力等问题,因此,如何快速准确鉴别小麦不完善粒是现阶段提高生产率和保证粮食安全的重要问题。运用高光谱成像技术和特征波段选取方法提出一种快速有效的小麦不完善粒鉴别方法。利用近红外高光谱成像系统获得1 000粒小麦样本在862.9~1 704.2 nm共256个波段的高光谱反射图像,其中包括健康粒、生芽粒、霉变粒和赤霉粒各250粒,提取每个样本感兴趣区域的平均反射率光谱作为分类特征。本文首先对提取的全波段光谱信息进行窗口平滑、一阶导数差分、矢量归一化等数据预处理,将原始光谱数据的隐藏信号放大并消除随机误差;在预处理的基础上运用伪偏最小二乘(DPLS)和正交化线性判别分析(OLDA)对光谱进行特征提取,降低数据的冗余度;最后采用仿生模式识别(BPR)建立四类小麦的鉴别模型。实验结果表明,采用全波段光谱信息建立的小麦不完善粒鉴别模型的平均识别精度达到97.8%,分析结果可知,利用近红外高光谱成像技术的全波段光谱信息对小麦不完善粒鉴别是可行的。尽管全波段光谱信息取得了较好的鉴别效果,但高光谱成像设备较为昂贵,获取高光谱全波段光谱信息数据量较大,无法满足对现场设备运算速度的高要求,因此,采用连续投影算法(SPA)对全波段光谱数据进行特征波段的选择,使波段数量由256维降低到10维,从而提高系统的可行性和运算速度。采用选取的10个特征波段建立小麦不完善粒鉴别模型,实验结果表明10个特征波段的平均识别精度仅为83.2%,分析结果可知,尽管采用10个特征波段提高了系统实时性,但鉴别准确性较差。为达到与全波段特征基本相当的鉴别效果,利用光谱特征与图像特征结合的方法建立小麦不完善粒鉴别模型,将上述选取的10个特征波段的形态信息、纹理信息和光谱信息进行结合,实验结果表明,10个特征波段的光谱信息与图像信息结合使鉴别的平均识别精度达到94.2%,此识别效果与利用全波段光谱数据的识别效果基本相当。利用高光谱成像系统探索了小麦不完善粒鉴别的可行性,通过分析以上实验可知,基于近红外高光谱成像技术对小麦不完善粒检测具有良好的效果,在有效的提高运算速度的同时也保证了系统的鉴别精度,为后期小麦不完善粒快速检测设备的开发提供了有效的研究方向。 相似文献
5.
基于I-BGLAM纹理和光谱融合的高光谱显微成像木材树种分类 总被引:1,自引:0,他引:1
为了提高木材树种分类的正确率,提出了一种基于I-BGLAM纹理特征和光谱特征融合的高光谱图像的木材树种分类方法。实验数据是利用SOC710VP高光谱成像仪获取的可见光/近红外(372.53~1 038.57 nm)范围内的高光谱图像。首先,利用基于OIF的特征波段选择方法降低高光谱图像的维数,选择出含有信息量大的波段。其次,对选择出的波段图像使用NSCT及NSCT逆变换得到融合图像,对得到的融合图像使用I-BGLAM提取其纹理特征。与此同时,对高光谱图像的全波段求取平均光谱并进行S-G(Savitzky-Golay)平滑得到光谱特征。最后,将得到的纹理特征和光谱特征融合后送进极限学习机(ELM)中进行分类。此外,还和基于灰度共生矩阵(GLCM)的木材识别的传统方法以及近几年木材树种识别领域内被提出的主流方法进行了比较。该研究主要创新点有两个:一是将强纹理提取器I-BGLAM用于高光谱图像中提取其纹理特征;二是提出一种新的特征融合的模型用于高光谱图像的分类。针对8个树种的实验结果表明,单独使用I-BGLAM提取的纹理特征来进行分类的正确率最高可到达88.54%,而使用GLCM提取纹理特征的传统方法正确率最高只有76.04%,该结果可以得出本文使用I-BGLAM在纹理特征提取方面要优于GLCM,这为后面建立的融合模型打下很好的基础,单独使用平均光谱特征来分类的正确率最高可以达到92.71%,使用所提出的特征融合方法所得到的分类正确率最高可达到100%,这说明使用所提出的融合模型来分类要比以前单独使用某一种特征的分类模型要好。此外,使用所提出的方法得到的分类正确率要高于本领域内其他两种主流的识别方法。因此,所提出的基于I-BGLAM纹理特征和光谱特征融合的方法能够提高木材树种分类的正确率,该方法在木材树种分类方面有着一定的利用价值。 相似文献
6.
7.
针对高光谱成像特点,提出了一种基于三维特征检测微小摄像头的方案。在空间维利用猫眼效应筛选疑似目标,在光谱维对结果进行精准判定。依据摄像头结构,分析了可见光摄像头的反射光谱特征。基于几何光学和辐射度学,计算和仿真了系统的探测距离。结果表明,正常工作时,光功率影响最小探测距离,目标尺寸影响最大探测距离。搭建了微小摄像头光谱特征验证系统。结果表明,采用吸收型红外截止滤光片的目标的非反射光占比曲线变化平缓且数值高,采用反射型红外截止滤光片的目标的非反射光占比曲线可见光部分数值高,红外部分数值低,从700 nm附近开始下降,甚至发生突变,实验数据显示,突变位置的斜率绝对值是红外波段斜率绝对值的10倍以上。实验结果与预期分析的结果一致,验证了高光谱成像技术检测微小摄像头的可行性。 相似文献
8.
机采籽棉杂质分类检测为调整棉花清理机械加工参数和工序提供参考依据,对提升皮棉品质具有重要意义。但由于籽棉棉层分布不均匀,使得图像检测难度增大,使用传统的检测方法无法有效检测各类杂质。采用高光谱成像方法对机采籽棉中的棉叶、棉枝、地膜和铃壳(内外)五种杂质进行分类判别检测。首先采集120个机采籽棉样本的高光谱图像,选取感兴趣区域获取平均光谱曲线。发现由于物质构成的差异,不同杂质体现出不同的吸收和反射特性,不同种类物质之间的光谱差异大于同类物质。对提取的平均光谱曲线进行主成分分析(PCA),结果显示棉花、残膜和铃壳外与其他三类相比,有较好的聚集性和可分性,但是棉叶、铃壳内和棉枝三类相互叠加在一起,空间分布存在严重交叉重叠。以提取的平均光谱曲线为训练样本,选择线性判别分析(LDA)、支持向量机(SVM)和神经网络(ANN)三种分类判别算法,对算法参数进行寻优,并建立机采籽棉杂质分类判别模型。其中,经过LDA模型降维后的样本空间较PCA表现出了更好的聚集性和可分性,采用正则化防止过拟合,得到训练集准确率为86.4%,测试集准确率为86.2%;SVM模型的参数寻优结果为C=105,g=0.1,其训练集准确率为83.42%,测试集准确率为83.40%;ANN模型参数寻优得到隐含层数和神经元个数分别为2和17,训练集准确率为82.9%,测试集准确率为81.8%。对三种模型的分类效果和检测用时进行比较,LDA模型结果最优。通过对高光谱图像进行像素等级分类判别,结果显示棉花识别效果较好,植物性杂质都被有效检测,但是地膜和棉花存在误识别,分类效果与杂质光谱的分类判别模型结果一致。因此,采用高光谱成像技术可以快速、无损的检测和识别籽棉杂质,为棉花加工装备提供反馈参数,对棉花加工机械化和智能化有重要意义。 相似文献
9.
10.
基于数字滤波技术,提出了获取物体反射光谱数据立方体和光谱响应曲线的主动式新型高光谱成像系统。对传统WDF型瓦兹渥斯反射式单色仪进行了改装,在入射光一定的情况下,增大出射光通量,提高了照射在物体表面的光强。利用数字滤波方式代替光学窄带滤波器,解决了多个光学滤光片不能连续可调和其他滤波器成本高的问题,建立了波长连续可调,带宽可调的高光谱成像系统。针对系统的特点和采集方式,提出了适当的定标方式,其波长误差2nm。得到了绿色树叶效果良好的光谱数据立方体和响应曲线,表明提出的系统适用于实验室中小视场内的光谱成像测量研究。 相似文献
11.
高光谱成像的猕猴桃糖度无损检测方法 总被引:1,自引:0,他引:1
猕猴桃糖度是重要的猕猴桃内部品质衡量指标.传统的糖度检测耗时且有损样品,有效无损检测猕猴桃糖度含量对于其品质分级、储藏销售具有重大意义.基于高光谱成像技术的常见果蔬品质无损检测方法多数是采用竞争性自适应重加权算法(CARS)、连续投影算法(SPA)、主成分分析(PCA)、迭代保留信息变量法(IRIV)等算法中的某个单一... 相似文献
12.
基于支持向量机(SVM)特征加权/选择的光谱匹配算法 总被引:1,自引:1,他引:1
高光谱数据波段多、冗余大,为了提高数据的分析效率和精度,降维是一个关键步骤。文章在文献(参考了后面的文献[18])研究的基础上,引入了迭代SVM特征选择/加权算法,为多目标遗传优化获取最优参考光谱提供一个包含有效分类信息的低维空间。基于Indiana-AVIRIS高光谱数据的实验表明,特征加权/选择的引入使光谱匹配分类精度提高了13%(相对于无特征选择的情况而言)。文章还根据光谱样本距SVM分类面的远近,定义和计算了局部权重,不仅细致刻画了同类光谱样本在局部特征空间中的分布,还使光谱相似度的计算更加灵活化,精度提高幅度达到了17%(相对于无特征选择的情况而言)。文章研究方法的提出推进了SVM在光谱数据分析中的应用深度和广度。 相似文献
13.
高光谱成像因光谱分辨率高、图谱合一、可实现快速无损检测等特点现已广泛应用于农业、医学、遥感等领域。现有的对可回收生活垃圾检测与分类的方法,都存在检测时间长,分类效率低,而大量多种垃圾无法同时快速分拣等问题。考虑到不同类别的生活垃圾由于其主要组成分子结构的差异,对不同波长的光有不同的吸收特性。高光谱图像在记录待分类垃圾的空间信息的同时,可以获得垃圾对不同波长的光的反射率光谱信息,通过建立识别分类模型对反射率光谱信息进行分析可以实现对高光谱图像中待分类垃圾的识别与分类。收集常见纸质、塑料、木质三种材料的可回收的垃圾样本,包括塑料瓶、食品包装袋、塑料玩具(饰品)碎片、一次性筷子、雪糕棒、木制家具碎片、木制包装盒、废旧课本、广告纸、办公用纸等多种物品共30个样本,进行清洗和裁剪处理,避免样本表面污渍对样本反射率产生影响。利用高光谱成像系统采集样本在近红外(780~1 000 nm)范围内的高光谱图像,其中18个样本做训练样本集,12个样本做测试样本集。对采集的样本图像数据做预处理,包括去噪声以及黑白校正反演反射率信息等处理;通过主成分分析(PCA)方法对训练样本集感兴趣区域(ROI)进行分析,提取到的特征波段为795.815,836.869,885.619,916.409,929.239,934.37,957.463,972.858和988.253 nm;在特征波段下分别提取这三种类别垃圾的参考光谱,通过光谱角度填图法(SAM)对测试样本ROI区域内提取的测试样本点集在特征波段下与参考光谱进行匹配,由匹配程度进行样本点归类,分析结果表明,测试样本集中纸制样本(A类别)、塑料样本(B类别)、木制样本(C类别)的分类准确度分别为100%,98%和100%,测试样本点集整体的分类准确度为99.33%;通过Fisher判别方法分析训练样本集得出判别函数式和判别准则,对测试样本点集分类,评价结果为A,B和C类样本分类准确度分别为100%,100%和97%,测试样本点集整体分类准确度为99%。通过SAM和Fisher两种判别方法对测试样本集的光谱图像进行目标物的检测与分类,结果表明,利用SAM判别方法在可回收垃圾的高光谱图像中实现检测与分类有更高的分类准确度,可达到99.33%。同时,也验证了使用高光谱成像进行可回收垃圾快速分类的科学性以及可行性,对未来系统化、机械化、智能化地解决生活中可回收垃圾的分类具有一定的实用意义。 相似文献
14.
土壤含水量(SMC)是生物地球化学和大气耦合过程的关键变量,在干旱区农业、生态和环境中扮演着重要角色。相较于星载遥感系统,无人机(UAV)具有可控性强、分辨率高等特点从而被广泛应用,为中小尺度地表参量的快速监测提供新的遥感平台。机载高光谱传感器的引入,为UAV遥感系统提供了高维海量、纳米级的数据源。然而基于UAV高光谱数据的研究并未深度挖掘,也尚未形成一个标准的技术方案。该研究立足于新疆维吾尔自治区典型农业区,利用6种预处理方案,包括一阶导数(FDR),二阶导数(SDR),连续体去除(CR)、吸光度(A)、吸光度一阶(FDA)和吸光度二阶(SDA),对所获取的UAV高光谱数据进行处理。在此背景下构建4种类型的适宜光谱指数:差值型指数(DI),比值型指数(RI),归一化型指数(NDI)和垂直型指数(PI),并从光谱机理上讨论指数的合理性。最后利用梯度提升回归树(GBRT)、随机森林(RF)和eXtreme Gradient Boosting(XGBoost)算法,以28个最适光谱指数为独立变量建立SMC估算模型,并通过不同集成学习算法的重要性对变量进行排序,从线性和非线性的角度对所构建光谱指数的效果进行考量评价。结果表明:(1)预处理和最适光谱指数能有效地消除了大气干扰和土壤背景,其中预处理A突出更多的光谱信息,PI相关性显著;(2)通过分析比较相关性系数(r)和集成学习算法的重要性,发现A_PI(|r|=0.773)是最适光谱指数,在线性和非线性关系中均有较优的表现;(3)在3种基于集成学习的SMC预测模型中,XGBoost估算模型效果拔群(R 2 val=0.926,RMSEP=1.943和RPD=2.556),其预测值的统计学特征与实测值的最为接近。3种模型效果排序为:XGBoost>RF>GBRT。综上所述,基于UAV高光谱影像,结合不同预处理和光谱指数,为低空遥感监测土壤墒情提出新的方案。该研究的方案具有潜在的高精度,是检测干旱区SMC的有效方法,针对快速易行地监测地表属性提供了崭新视角。相关结果为干旱区精准农业、生态系统给予更好的管理和保护策略。 相似文献
15.
高光谱成像技术的库尔勒梨早期损伤可视化检测研究 总被引:2,自引:0,他引:2
利用高光谱成像技术对库尔勒梨早期损伤进行快速识别检测。以60个库尔勒梨为研究对象,采集380~1 030 nm波段范围内完好样本和损伤后1~7天样本的480幅高光谱图像。提取图像中感兴趣区域(ROI)的平均光谱信息,利用小波变换(WT)对光谱数据进行去噪平滑,将去噪后的全部样本按2∶1的比例分成建模集(320个)和预测集(160个)。利用二阶导数从全谱信息中提取出19个特征波长,分别基于全谱和提取出的特征波长对建模集和预测集进行支持向量机(SVM)建模分析。结果表明,基于全谱和特征波长的判别分析模型中,两者预测集的识别率都达到93.75%,表明提取的特征波长包含了光谱数据中的关键信息。然后,基于特征波长运用波段比运算挑选最佳波段比,根据波段比F值的分布确定光谱图像分割的最佳波长684和798 nm。对最佳波段比(684/798 nm)下的图像,利用选择性搜索(SS)对高光谱图像中样本的完好和损伤区域进行分割,从分割结果来看,1~7天损伤样本的受损区域能够被准确检测出来。研究结果表明:基于高光谱成像技术对库尔勒梨进行损伤鉴别是可行的,该研究所获得的特征波长和波段比为研发在线实时的库尔勒梨损伤检测系统提供支撑。 相似文献
16.
煤与矸石分选是煤矿生产的必要工序,现有的人工分选与机械分选,存在效率低,易造成资源浪费以及环境污染等问题.鉴于可见/近红外高光谱成像具有分析速度快、样品无需预处理、无污染等诸多优势,旨在探讨基于可见/近红外高光谱成像对黑色背景下块状煤与矸石准确分类的可行性,并基于特征波长筛选算法简化模型,为构建多光谱煤与矸石分选系统提... 相似文献
17.
基于高光谱技术的玉米种子可视化鉴别研究 总被引:2,自引:0,他引:2
种子纯度是衡量种子品质的重要指标。提出一种基于近红外(874~1 734 nm)高光谱技术实现玉米种子可视化鉴别的方法。采集4个品种共384个玉米种子样本的高光谱图像数据,随机选择288个样本作为建模集,剩余96个样本作为预测集。对玉米种子光谱曲线进行分析后,通过连续投影算法(SPA)选取7个特征波段作为输入,结合偏最小二乘法判别分析(PLS-DA)模型,对预测集进行预测,获得较好的分类效果,其中RC=0.917 7,RMSECV=0.444 2; RCV=0.911 5,RMSECV=0.459 9,建模集和预测集的总体鉴别率分别为78.5%和70.8%。通过图像处理技术提取高光谱图像中每个玉米颗粒的平均光谱数据,输入建立的SPA-PLS-DA模型,在计算生成的鉴别图中以不同颜色标识不同类别,实现了混杂玉米种子样本的可视化鉴别。对3份不同组成的混杂种子样本进行鉴别,达到了较好的可视化效果。结果表明,通过可视化鉴别技术,可以直观方便地观察混杂种子样本中不同品种种子的分布和数量,为农业生产中种子的纯度鉴别和筛选提供了帮助。 相似文献
18.
OUYANG Ai-guo WAN Qi-ming LI Xiong XIONG Zhi-yi WANG Shun LIAO Qi-cheng 《光谱学与光谱分析》2021,41(12):3844-3850
为了控制水稻螟虫预警和喷洒农药用量,实现对水稻螟虫虫害的无损检测,提出了基于主成分分析特征波段检测方法和基于迭代阈值的最优波段检测方法,确定了水稻茎秆螟虫检测的特征波段和最优波段,提取出单波段和组合波段的图像来分割虫孔,从而实现水稻螟虫的精准的无损检测。首先通过高光谱得到的120个样品反射率信息分析确定了光谱区域为450~1 000 nm。基于主成分分析特征波段检测方法,对高光谱图像进行主成分分析,通过前五个主成分图像比较确定第三主成分图像为最佳,然后根据第三主成分图像中各个波段的贡献率来选取特征波长(668.8和750 nm),最后结合全局阈值分割和图像掩膜等图像处理方法实现对虫孔区域的判别。而利用基于迭代阈值的最优波段检测方法,在可见光波段450~750 nm范围和近红外波段750~1 000 nm范围内应用混合距离挑选最佳的单波段,通过单波段来确定组合波段,对单波段和组合波段进行迭代阈值分割,其中753.5 nm波长分割效果最好,故确定753.5 nm为最优波长,然后提取该波长的图像采用一种基于迭代阈值虫孔提取方法和形态学处理,最后能对水稻茎秆虫孔区域进行判别来实现水稻茎秆虫害是否存在。对60个虫害水稻茎秆和60个正常水稻茎秆进行检测,应用基于主成分分析特征波段检测方法在668.8和750 nm波长处检测率分别为95.8%和93.3%,而应用基于迭代阈值的最优波长检测方法在753.5 nm波长处检测率高达96.7%。说明利用基于迭代阈值的最优波长检测方法对水稻螟虫的检测更加精确,也说明所获取的特征波段和最优波段为以后水稻螟虫虫害的多光谱成像技术提供了理论参考。 相似文献