首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In order to form suitable systems designed for resonance energy transfer, a series of monodisperse methacrylate‐based monomers containing rigid π‐conjugated oligo(phenylene ethynylenes) with different sizes of the conjugated systems ( M1 – M3 ), and therefore different optoelectronic properties, were synthesized and subsequently polymerized using the reversible addition–fragmentation chain transfer polymerization technique ( P1 – P3 ). In addition, these oligomers were also copolymerized with methyl methacrylate. The obtained polymers were characterized by 1H NMR spectroscopy, size exclusion chromatography, and analytical ultracentrifugation. The photophysical properties of the polymers were studied by UV–vis absorption and emission spectroscopy in diluted solutions as well as in thin films and compared to the photophysics of the corresponding monomers. Thereby, changes going from monomeric to polymeric systems could be detected in fluorescence quantum yields and lifetimes pointing to energy trapping, e.g., energy transfer. Donor–acceptor copolymers containing different numbers of monomeric units within the side chain exhibit differences in the emission spectra, indicating that energy trapping in polymers is very sensitive to structural properties such as the chain length. UV–vis absorption spectroscopy as well as time‐resolved lifetime studies indicate intrapolymer and interpolymer energy transfer. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

2.
Poly(N‐vinylcaprolactam) (PNVCL) star‐shaped polymers with four arms and carboxyl end groups were synthesized by reversible addition–fragmentation chain transfer (RAFT) polymerization of N‐vinylcaprolactam (NVCL) employing a tetrafunctional trithiocarbonate as an R‐RAFT agent. The resulting star polymers were characterized using 1H NMR, FT‐IR, gel permeation chromatography (GPC), and UV–vis. Molecular weight of star polymers were analyzed by GPC and UV–vis being observed that the values obtained were very similar. Furthermore, the thermosensitive behavior of the star polymers was studied in aqueous solution by measuring the lower critical solution temperature by dynamic light scattering. Star‐shaped PNVCL were chain extended with ethyl‐hexyl acrylate (EHA) to yield star PNVCL‐b‐PEHA copolymers with an EHA molar content between 4% and 6% proving the living character of the star‐shaped macroCTA. These star block copolymers form aggregates in aqueous solutions with a hydrodynamic diameter ranged from 170 to 225 nm. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2156–2165  相似文献   

3.
In this work, a benzenedinitrile functionalized monomer, 2‐methyl‐acrylic acid 6‐(3,4‐dicyano‐phenoxy)‐hexyl ester, was successfully polymerized via the reversible addition‐fragmentation chain transfer method. The polymerization behavior conveyed the characteristics of “living”/controlled radical polymerization: the first‐order kinetics, linear increase of number‐average molecular weight with monomer conversion, narrow molecular weight distribution, and successful chain‐extension experiment. The soluble Zn(II) phthalocyanine (Pc)‐containing (ZnPc) polymers were achieved by post‐polymerization modification of the obtained polymers. The Zn(II) phthalocyanine‐functionalized polymer was characterized by FTIR, UV–vis, fluorescence, atomic absorption spectroscopy, and thermogravimetric analysis. The potential application of above ZnPc‐functionalized polymer as electron donor material in bulk heterojunction organic solar cell was studied. The device with ITO/PEDOT:PSS/ZnPc‐Polymer/PC61BM/LiF/Al structure provided a power conversion efficiency of 0.014%, fill factor of 0.24, open circuit voltage (Voc) of 0.21 V, and short‐circuit current (Jsc) of 0.28 mA/cm2. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 691–698  相似文献   

4.
The syntheses and rheological behavior of ethyl hydroxyethyl cellulose (EHEC)‐based graft‐copolymers were studied. Copolymers were prepared by grafting EHEC with acrylamide (Aam) via reversible addition fragmentation chain transfer (RAFT) polymerization. Hydroxyl groups of EHEC were esterified with a carboxylic acid functional chain transfer agent (CTA) to prepare EHEC‐macroCTAs with different degrees of substitution. EHEC‐macroCTAs were characterized by ATR‐FTIR, 13C NMR, and SEC, and elemental analysis was used to quantify the degree of CTA substitution. EHEC‐macroCTAs with different degrees of substitution were copolymerized with acrylamide by “grafting from” technique. Formation of new cellulose‐based copolymers was comprehensively confirmed by 1H NMR, ATR‐FTIR, and SEC measurements. Further, the associations of EHEC‐g‐PAam copolymers in water were studied at various concentrations and temperatures by means of UV–vis spectroscopy, fluorescence spectroscopy, and rheological measurements. The results indicate that copolymers have both intra and intermolecular association in water depending on the amount of grafts. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1869–1879, 2009  相似文献   

5.
A novel series of hard‐soft‐hard triblock azo‐copolymers (TBCs) composed of poly(2‐[2‐(4‐cyano‐azobenzene‐4‐oxy)ethylene‐oxy]ethyl methacrylate) (PCEAMA), poly(methyl methacrylate) (PMMA) and poly(p‐dodecylphenyl‐N‐acrylamide) (PDOPAM) were synthesized by employing reversible addition‐fragmentation chain transfer polymerization. Chemical structures and molecular weights were characterized by 1H nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). Thermal behavior, mesophase, photochemistry and morphology were investigated using differential scanning calorimetry (DSC), optical polarizing microscopy (OPM), ultraviolet–visible spectrophotometry (UV–vis), atomic force microscopy (AFM) and grazing‐incidence small‐angle X‐ray scattering (GISAXS). Kinetic studies confirmed characteristic of controlled/living radical polymerization with low polydispersities (≤1.40). TBCs manifested both endothermic and exothermic transition peaks assigned to smectic to nematic, nematic to smectic, and smectic‐A to smectic‐C phases. TBCs having hight azo fractions of 39 and 34 wt % revealed textures of smectic phase whereas TBC possessing 30 wt % of azo content exhibited poor texture, suggesting nematic phase. Regarding TBC with low azo ratio (25 wt %), neither mesophase texture was found. All TBCs showed photoresponsive behavior under UV–vis irradiation or thermal relaxation. TBC‐1 with PCAEMA (39 wt %), PMMA (40 wt %) and PDOPAM (21 wt %) generated a mixture of cylinder and lamellar nanostructures compared to TBC‐2 and TBC‐3 which formed lamellae. However, TBC‐4 having the highest PDOPAM fraction (50 wt %) produced hexagonal cylindrical nanostructure. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1617–1629  相似文献   

6.
A series of positively charged imidazolium‐functionalized ionic polyurethanes (IPUs) were prepared in one‐step polymerization process by polymerization of presynthesized short‐chain imidazolium‐based ionic diol, polyethylene glycols with different molecular weights as long‐chain diols, and toluylene‐2,4‐diisocyanate. The structures of IPUs are confirmed by 1H NMR analysis, and the thermogravimetric analysis measurement indicates that the IPUs have high degradation temperature. Fluorescent nanocrystal–polymer composites CdTe–IPU can be prepared conveniently, by the electrostatic interaction between positively charged IPUs and the negatively charged aqueous CdTe quantum dots (QDs). UV–vis absorption and photoluminescence spectra indicate the photochemical stability and strong fluorescent emission of CdTe–IPU composites. The quantum yields (QYs) of the composites are high and basically restore the QYs of the pure QDs. In addition, the transmission electron microscopy photographs show that the QDs in composites are uniform (about 3 nm in diameter) and monodisperse. The obtained nanocomposites are powder or elastomers with good film building. The casted CdTe–IPU films are transparent under visible light, and the colors of the composites and their films are vivid under a UV lamp. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
The first‐ and second‐generation well‐defined thermoresponsive amphiphilic linear–dendritic diblock copolymers based on hydrophilic linear poly(N‐vinylcaprolactam) and hydrophobic dendritic aromatic polyamide have been synthesized via reversible addition fragmentation chain transfer polymerization of N‐vinylcaprolactam by employing dendritic chain‐transfer agents possessing a single dithiocarbamate moiety at the focal point. These linear–dendritic copolymers exhibit reversible temperature‐dependent phase transition behaviors in aqueous solution as characterized by turbidity measurements using UV–vis spectroscopy. Their lower critical solution temperatures depend on the generation of the dendritic aromatic polyamides and the concentrations of the copolymer solutions. These amphiphilic copolymers are able to form nanospherical micelles in the aqueous solution as revealed by fluorescent spectroscopy, dynamic light scattering, and transmission electron microscope (TEM). The core–shell structure of micelles has been proved by 1H NMR analyses of the micelles in D2O. The micelles loaded with indomethacin as a model drug showed high‐drug loading capacity and thermoresponsive drug release behavior. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3240–3250  相似文献   

8.
A series of well‐defined amphiphilic diblock copolymers consisting of hydrophobic polyisobutylene (PIB) and hydrophilic poly(2‐(diethylamino)ethyl methacrylate) (PDEAEMA) segments was synthesized via the combination of living carbocationic polymerization and reversible addition fragmentation chain transfer (RAFT) polymerization. Living carbocationic polymerization of isobutylene followed by end‐capping with 1,3‐butadiene was first performed at ?70 °C to give a well‐defined allyl‐Cl‐terminated PIB with a low polydispersity (Mw/Mn =1.29). This end‐functionalized PIB was further converted to a macromolecular chain transfer agent for mediating RAFT block copolymerization of 2‐(diethylamino)ethyl methacrylate at 60 °C in tetrahydrofuran to afford the target well‐defined PIB‐b‐PDEAEMA diblock copolymers with narrow molecular weight distributions (Mw/Mn ≤1.22). The self‐assembly behavior of these amphiphilic diblock copolymers in aqueous media was investigated by fluorescence spectroscopy and transmission electron microscope, and furthermore, their pH‐responsive behavior was studied by UV‐vis and dynamic light scattering. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1478–1486  相似文献   

9.
The copper(I)-catalyzed azide-alkyne cycloaddition provided an easy and efficient access to a functionalized heteroleptic ruthenium(II) complex monomer. A grafted copolymer with the heteroleptic ruthenium(II) complex and methyl methacrylate (MMA) as comonomer was synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization. The product was characterized by means of 1H NMR spectroscopy, UV/vis spectroscopy and size exclusion chromatography coupled with a photodiode array detector. The RAFT process itself led to a grafted copolymer with a low polydispersity index.  相似文献   

10.
This investigation reports the polymerization of hexyl acrylate (HA) using atom transfer radical polymerization technique and subsequently the preparation of its di‐ and triblock copolymers with methyl methacrylate. Atom transfer radical polymerization of HA was investigated using different initiators and CuBr or CuCl as catalyst in combination with varying ligands, e.g., 2,2′‐bipyridine and N,N,N′,N″,N″‐pentamethyl diethylenetriamine. Reaction parameters were adjusted to successfully polymerize HA with well‐defined molecular weights and narrow polydispersity indices. The polymerization was better controlled by the addition of polar solvents, which created a homogeneous catalytic system. UV–vis analysis showed that the polar solvent, acetone coordinated with copper (I), changes the nature of the copper catalyst, thereby influencing the dynamic equilibrium of activation–deactivation cycle. This resulted in improved control over polymerization as well as in lowering the polydispersity indices, but at the cost of polymerization rate compared with the bulk process. The presence of ? Br end group in the polymer chains was confirmed by 1H NMR as well as MALDI‐TOF mass analysis. In addition, poly(hexyl acrylate) was used as macroinitiator to prepare various “all‐acrylate” block (diblock, triblock) copolymers that were characterized by GPC and 1H NMR. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3499–3511, 2008  相似文献   

11.
Abstract

Two novel building blocks M1, M2 with different electronic structures, were synthesized based on 2,2′:6′,2″-terpyridine modified with cyano-p-phenylenevinylene (CN-PV) and carbazole moieties through Knoevenagel condensation and Suzuki coupling, respectively. Directed by transition metal ion Zn2+, the metallo-homopolymers P1, P2 and metallo-copolymer P3 were obtained via self-assembly polymerization. The structures of the monomers and metallo-supramolecular polymers were fully characterized by MS, 1H-NMR and 13C-NMR. Meanwhile, the UV–vis absorption, photoluminescence (PL) and electrochemical properties of these compounds were systematically investigated. With respect to that of the monomers, both the UV–vis absorption and PL spectra of the polymers are significantly red-shifted. The resulting metallo-supramolecular polymers show similar double absorption peaks (342, 418?nm for P1, 339, 410?nm for P2, and 332, 412?nm for P3), which is caused by the π–π* transition and intramolecular charge transfer (ICT). Further, all the polymers display red-orange emission in toluene and narrow electrochemical energy gaps of 1.46, 1.65 and 1.48?eV for P1, P2, and P3, respectively.  相似文献   

12.
Novel nanophase hexagonal structured polyaniline (PANI) and poly(2,5‐dimethoxyanilines) (PDMA) were synthesized by oxidative polymerization involving the respective anilines and a mixture of ferric chloride and ammonium persulfate. The morphological, spectral and electrochemical characteristics of the polymers were determined from the results of SEM, FTIR, UV‐vis, TGA and cyclic voltammetry experiments. The hexagonal PANI and PDMA nanorods (15–200 nm diameter) exhibited very good thermal stabilities, losing only 10% of their weight on heating to 400 °C. Electrochemical data indicated a pernigraniline state of the polymers with formal potential, E°′, values of 394±6 mV and 400±1 mV, for PANI (conductance, C=0.37×10?3 S) and PDMA (conductance, C=2.02×10?3 S), respectively. The pernigraniline state was confirmed by sharp FTIR pernigraniline quinoidic peaks (PANI: 1414 cm?1; PDMA: 1157 cm?1), and UV‐vis absorption maxima at 340–370 nm (PANI) and 450–650 nm (PDMA) which are characteristic of charge transfer excitons of the quinoid structures of pernigraniline.  相似文献   

13.
Hydrophilic/CO2‐philic poly(ethylene oxide)‐b‐poly(1,1,2,2‐tetrahydroperfluorodecyl acrylate) block copolymers were synthesized via reversible addition–fragmentation chain transfer (RAFT) polymerization, iodine transfer polymerization (ITP), and atom transfer radical polymerization (ATRP) in the presence of either degenerative transfer agents or a macroinitiator based on poly(ethylene oxide). In this work, both RAFT and ATRP showed higher efficiency than ITP for the preparation of the expected copolymers. More detailed research was carried out on RAFT, and the living character of the polymerization was confirmed by an ultraviolet (UV) analysis of the ? SC(S)Ph or ? SC(S)S? C12H25 end groups in the polymer chains. The quantitative UV analysis of the copolymers indicated a number‐average molecular weight in good agreement with the value determined by 1H NMR analysis. The properties of the macromolecular surfactants were investigated through the determination of the cloud points in neat liquid and supercritical CO2 and through the formation of water‐in‐CO2 emulsions. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2405–2415, 2004  相似文献   

14.
A novel aromatic acetal‐based acid‐labile monomer 2‐phenyl‐5‐ethyl‐5‐acryloxymethyl‐1,3‐dioxacyclohexane (HEDPA) was synthesized and polymerized by reversible addition fragmentation chain transfer (RAFT) polymerization using alkynyl functional chain transfer agent (CTA‐Alk). Afterward, a series of amphiphilic diblock copolymers composed of fixed hydrophobic poly(2‐phenyl‐5‐ethyl‐5‐acryloxymethyl‐1,3‐dioxacyclohexane) (PDAEP) segments and various lengths of hydrophilic mPEG segments were prepared through click reaction between alkynyl‐terminated PDAEP and azido‐terminated mPEG. The self‐assembly behaviors of the diblock copolymers were investigated by dynamic light scattering (DLS), transmission electron microscopy (TEM), fluorescence spectroscopy, and 1H NMR. These results indicated that the diblock copolymers could self‐assemble into nano‐sized micelles with PDAEP cores and PEG coronas in aqueous solution. DLS, fluorescence spectroscopy and UV–vis spectroscopy were used to monitor the pH‐triggered assembly/disassembly transition of the micelles. These results showed that the assembly/disassembly transition behaviors of the diblock copolymers micelles can be adjusted by changing the lengths of the mPEG segments. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1537–1547  相似文献   

15.
The controlled/living radical polymerization of 2‐(N‐carbazolyl)ethyl methacrylate (CzEMA) and 4‐(5‐(4‐tert‐butylphenyl‐1,3,4‐oxadiazol‐2‐yl)phenyl) methacrylate (t‐Bu‐OxaMA) via reversible addition‐fragmentation chain transfer polymerization has been studied. Functional polymers with hole‐ or electron‐transfer ability were synthesized with cumyl dithiobenzoate as a chain transfer agent (CTA) and AIBN as an initiator in a benzene solution. Good control of the polymerization was confirmed by the linear increase in the molecular weight (MW) with the conversion. The dependence of MW and polydispersity index (PDI) of the resulting polymers on the molar ratio of monomer to CTA, monomer concentration, and molar ratio of CTA to initiator has also been investigated. The MW and PDI of the resulting polymers were well controlled as being revealed by GPC measurements. The resulting polymers were further characterized by NMR, UV‐vis spectroscopy, and cyclic voltammetry. The polymers functionalized with carbazole group or 1,3,4‐oxadiazole group exhibited good thermal stability, with an onset decomposition temperature of about 305 and 323 °C, respectively, as determined by thermogravimetric analysis. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 242–252, 2007  相似文献   

16.
Monoalkynyl‐functionalized fullerene was precisely synthesized starting with pristine fullerene (C60) and characterized by multiple techniques. Methyl methacrylate and 6‐azido hexyl methacrylate were then randomly copolymerized via reversible addition fragmentation chain transfer polymerization to build polymer backbones with well‐controlled molecular weights and copolymer compositions. Finally, these two moieties were covalently assembled into a series of well‐defined side chain fullerene polymers (SFPs) via the copper‐mediated click reaction which was verified by Fourier transform infrared spectroscopy and 1H NMR. The fullerene loadings of the resultant polymers were estimated by thermogravimetric analysis and UV–vis spectroscopy, demonstrating consistent and high conversions in most of the samples. The morphology studies of the SFPs were performed both in solution and on solid substrates. Very intriguing self‐aggregation behaviors were detected by both gel permeation chromatography and dynamic light scattering analyses. Furthermore, the scanning electron microscopic images of these polymers showed the formation of various supramolecular nanoparticle assemblies and crystalline‐like clusters depending on the fullerene contents and polymer chain lengths. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3572–3582  相似文献   

17.
4‐Arm star side‐chain liquid crystalline (LC) polymers containing azobenzene with different terminal substituents were synthesized by atom transfer radical polymerization (ATRP). Tetrafunctional initiator prepared by the esterification between pentaerythritol and 2‐bromoisobutyryl bromide was utilized to initiate the polymerization of 6‐[4‐(4‐methoxyphenylazo)phenoxy]hexyl methacrylate (MMAzo) and 6‐[4‐(4‐ethoxyphenylazo)phenoxy]hexyl methacrylate (EMAzo), respectively. The 4‐arm star side‐chain LC polymer with p‐methoxyazobenzene moieties exhibits a smectic and a nematic phase, while that with p‐ethoxyazobenzene moieties shows only a nematic phase, which derives of different terminal substituents. The star polymers have similar LC behavior to the corresponding linear homopolymers, whereas transition temperatures decrease slightly. Both star polymers show photoresponsive isomerization under the irradiation with UV–vis light. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3342–3348, 2007  相似文献   

18.
pH‐Sensitive block glycopolymers of poly(2‐(diethylamino)ethyl methacrylate) (PDEAEMA) and poly(3‐O‐methacryloy‐α,β‐D ‐glucopyranose) (PMAGlc) were synthesized via reversible addition–fragmentation chain transfer (RAFT) radical polymerization based on protected glycomonomer 3‐O‐methacryloyl‐1,2:5,6‐di‐O‐isopropylidene‐D ‐glucofuranose (MAIpGlc). It was found that RAFT homopolymerization of MAIpGlc proceeded in a controlled fashion with 4‐cyanopentanoic acid dithiobenzoate as chain transfer agent. Using the dithioester‐capped PDEAEMA as macro‐RAFT agent, block copolymerization of MAIpGlc was in good control as indicated by the linear pseudo first‐order kinetic plot, the linear increment of number‐average molecular weights as well as narrow and symmetrical gel permeation chromatography peaks, and low polydispersities. Well‐defined diblock copolymers of DEAEMA and MAIpGlc were prepared successfully through the chain extension of PDEAEMA. The deprotection of MAIpGlc units in trifluoroacetic acid/H2O solution afforded PDEAEMA‐b‐PMAGlc block glycopolymer. The self‐assembly behavior of PDEAEMA‐b‐PMAGlc in aqueous solution was investigated by using 1H NMR, UV‐vis spectroscopy, dynamic light scattering, and transmission electron microscopy. The results demonstrated that spherical micelles with PDEAEMA as the hydrophobic cores and PMAGlc as the hydrophilic shells were formed in alkaline aqueous solution. These glucose‐installed micelles had specific recognition with Concanavalin A. The combination of pH‐sensitivity of PDEAEMA and biomolecular recognition of PMAGlc in one micellar system may create a multifunctional platform for targeted delivery, biomimetics, and biodection. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3350–3361, 2010  相似文献   

19.
A new bipyridine‐functionalized dithioester was synthesized and further used as a RAFT agent in RAFT polymerization of styrene and N‐isopropylacrylamide. Kinetics analysis indicates that it is an efficient chain transfer agent for RAFT polymerization of the two monomers which produce polystyrene and poly(N‐isopropylacrylamide) polymers with predetermined molecular weights and low polydispersities in addition to the end functionality of bipyridine. The bipyridine end‐functionalized polymers were further used as macroligands for the preparation of star‐shaped metallopolymers. Hydrophobic polystyrene macroligand combined with hydrophiphilic poly(N‐isopropylacrylamide) was complexed with ruthenium ions to produce amphiphilic ruthenium‐cored star‐shaped metallopolymers. The structures of these synthesized metallopolymers were further elucidated by UV–vis, fluorescence, size exclusion chromatography (SEC), and differential scanning calorimetry (DSC) as well as NMR techniques. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4225–4239, 2007  相似文献   

20.
Four chalcones with large conjugation structures were designed and synthesized. Strong light absorption within the UV–vis range (λmax = 380–410 nm, εmax = 10,200–33,600 M−1 cm−1) matched the emission of light-emitting diodes within 385–450 nm. Compared with that of phenyl ring-containing chalcone, the bathochromic shift of the four chalcones was due to the enlarged conjugation structure and the intramolecular charge transfer effect. The reactive species produced from two- or three-component photoinitiating systems (PISs) based on chalcone-containing triphenyl amine and N-ethyl carbazole combined with an iodonium salt or/and an amine were highly efficient for versatile photopolymerizations (i.e., radical, cationic, blending, and thiol-ene polymerizations) upon soft exposure conditions (385–425 nm LEDs). UV–vis spectra, theoretical calculation, electrochemistry, real-time nuclear magnetic resonance spectra, and fluorescence quenching were investigated to determine the photochemical mechanism. Chalcone photoisomerization, which mainly occurred in anthracene-containing chalcone, weakened the initiation ability of the PISs. These chalcones have promising applications in photopolymerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号