首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The influence of accelerated thermal treatment of thermosetting epoxy laminate on its glass transition temperature was studied. Lamplex® FR-4 glass fibre-reinforced epoxy laminate (used for printed circuit board manufacturing) was used in these experiments. The composite was exposed to thermal treatments at temperatures ranging from 170 °C to 200 °C for times ranging from 10 to 480 h. The glass transition temperature (Tg) was analysed via dynamic mechanical analysis (DMA). It has been proven that the glass transition temperature rapidly decreases in reaction to thermal stress. The obtained Tg data were used for Arrhenius plots for different critical temperatures (Tg-crit. = 105–120 °C). From their slopes (?Ea/R), the activation energy of the thermal degradation process was calculated as 75.5 kJ/mol. In addition to this main relaxation mechanism, DMA also recorded one smaller relaxation process in the most aged samples. Microscopic analysis of the sample structure showed the presence of pronounced small regions of degradation both on the surface and in the inner structure, which are probably the causes of microscopic delamination and the smaller relaxation process.  相似文献   

2.
Electron beam (e-beam) curing is a technology that offers advantages over the thermal curing process, that usually requires high temperature and are time-consuming. E-beam curing is faster and occurs at low temperatures that help reduce residual mechanical stresses in a thermoset composite. The aim of the present study is to analyze the effects of cationic initiator (diaryliodonium hexafluoroantimonate) ranged from 1 to 3 wt% in DGEBA (diglycidyl ether of bisphenol A) epoxy resin when cured by a 1.5 MeV electron beam. The specimens were cured to a total dose of 200.4 kGy for 40 min. Analyses by dynamic mechanical thermal analysis (DMTA) and differential scanning calorimetry (DSC) show that the e-beam irradiated samples with 2 wt% cationic initiator were 96% cured obtained a glass transition temperature (tan δ) of 167 °C. The same epoxy resin, thermally cured for 16 h with an anhydride hardener, reached a Tg (tan δ) of 136 °C. So, the irradiated sample had its Tg increased approximately 20% and the curing process was much less time consuming.  相似文献   

3.
《Solid State Sciences》2007,9(11):1054-1060
The influence of Hf doping on the structure and dielectric properties of BaTiO3 has been studied. For this purpose Ba(Ti1−xHfx)O3 ceramics were prepared through solid-state reaction route at close compositions, having x = 0.20, 0.22, 0.23 and 0.30. The study was aimed to locate the exact hafnium concentration for normal to relaxor crossover in these ceramics. X-ray diffraction followed by Rietveld refinement, reveals the formation of single phase with Pm3m cubic structure. Temperature and frequency dependence of real (ɛ′) and imaginary (ɛ″) parts of the dielectric permittivity have been studied in the temperature range of 90–350 K, at frequencies between 0.1 kHz and 100 kHz. The dielectric permittivity variations with temperature show deviation from Curie–Weiss behavior and strong frequency dispersion. The deviation from Curie–Weiss behavior, discontinuous jump along with the change in the slope of Tm vs Hf concentration plot, and the degree of relaxation (γ) approaching ∼2, indicate a crossover from normal to relaxor ferroelectrics. Substitution of Hf4+ for Ti4+ in BaTiO3 introduces structural disorder, causing perturbations like local electric and strain fields. These perturbations reduce the long-range polar order resulting in relaxor behavior.  相似文献   

4.
Relative permittivity measurements were made on binary mixtures of (1,2-butanediol + 2-ethyl-1-hexanol) and (1,2-butanediol + 1,4-dioxane) for various concentrations at T = (298.2, 308.2, and 318.2) K. The molecular dipole moments were determined using Guggenheim–Debye method in the temperature range of (298.2 to 318.2) K. The variations of effective dipole moment and correlation factor, g, with the mole fraction in these materials were investigated using Kirkwood–Frohlich equation. The pure compounds showed a negative and small temperature coefficient of effective dipole moment. In order to obtain valuable information about heterogeneous interaction (interactions between the unlike molecules), the Kirkwood correlation factor, the Bruggeman dielectric factor and the excess permittivity were calculated. In addition, in order to predict the permittivity data of polar-apolar binary mixtures, five mixing rules were applied.  相似文献   

5.
The Knudsen mass-loss effusion technique was used to measure the vapour pressures at different temperatures of the following six compounds: 2-methyl-3-nitrobenzoic acid, between T =  357.16 K and T =  371.16 K; 2-methyl-6-nitrobenzoic acid, between T =  355.16 K and T =  369.16 K; 3-methyl-2-nitrobenzoic acid, between T =  371.16 K and T =  385.14 K; 3-methyl-4-nitrobenzoic acid, between T =  363.21 K and T =  379.16 K; 4-methyl-3-nitrobenzoic acid, between T =  363.10 K and T =  377.18 K; 5-methyl-2-nitrobenzoic acid, between T =  355.18 K and T =  371.08 K. From the temperature dependence of the vapour pressure, the standard molar enthalpies of sublimation were derived by the Clausius–Clapeyron equation and the molar entropies of sublimation at equilibrium pressures were calculated. Using estimated values for the heat capacity differences between the gas and the crystal phases of the studied compounds the standard, po =  105Pa, molar enthalpies ΔcrgHmo, entropies ΔcrgSmoand Gibbs energies ΔcrgGmoof sublimation at T =  298.15 K, were derived:  相似文献   

6.
Relative permittivity measurements were made on binary mixtures of (2-butanol + 2-butanone) and (2-butanol or 2-butanone + cyclohexane) for various concentrations at T = (298.2, 308.2, and 318.2) K. Some experimental results are compared with those obtained from theoretical calculations and interpreted in terms of homo- and heterogeneous interactions and structural effects. The molecular dipole moments were determined using Guggenheim–Debye method within the temperature range of (298.2 to 318.2) K. The variations of effective dipole moment and correlation factor, g, with the mole fraction in these materials were investigated using Kirkwood–Frohlich equation. The pure compounds showed a negative and small temperature coefficient of effective dipole moment. In order to obtain valuable information about heterogeneous interaction (interactions between the unlike molecules), the Kirkwood correlation factor, the Bruggeman dielectric factor and the excess permittivity were calculated. In order to predict the permittivity data of polar–apolar binary mixtures, five mixing rules were applied.  相似文献   

7.
Calorimetric measurements performed in a wide temperature range on (NH4)3VO2F4 have shown the presence of four heat capacity anomalies at T1 = 438 K, T2 = 244 K, T3 = 210.2 K, T4 = 205.1 K associated with the first order phase transitions. In accordance with the permittivity behavior, the structural transformations are of nonferroelectric nature. Pressure dependence of the phase transition temperatures has been studied by DTA under pressure. The entropy of phase transitions is analyzed mainly in the framework of the orientational disordering of NH4+ and VO2F43? ions in a cubic phase.  相似文献   

8.
The relative permittivity, loss, and breakdown strength are reported for a commercial sample of bisphenol A‐polycarbonate (comm‐BPA‐PC) and a purified sample of the same polymer (rp‐BPA‐PC) as well as for two new polycarbonates having low molecular cross‐sectional areas, namely a copolymer of tetraaryl polycarbonate and BPA‐PC (TABPA‐BPA‐PC) and a triaryl polycarbonate homopolymer (TriBPA‐PC). The glass transition temperatures of the new polymers are higher than the Tg of BPA‐PC (187 and 191 °C vs. 148 °C). Relative permittivity and loss measurements were carried out from 10 to 105 Hz over a wide temperature range, and results for the α‐ and γ‐relaxation regions are discussed in detail. For the α‐relaxation, the isochronal peak position, Tα, scales approximately with Tg. On the other hand, the peak temperature for the γ‐relaxation is approximately constant, independent of Tg. Also, in contrast to what is observed for α, γ exhibits a strong increase in peak height as temperature/frequency increases and a significant difference is found between Arrhenius plots determined from isochronal and isothermal data analyses. Next, the γ‐relaxation region for comm‐BPA‐PC and associated activation parameters show strong history/purity effects. The activation parameters also depend on the method of data analysis. The results shed light on discrepancies that exist in the literature for BPA‐PC. The shapes of the γ loss peaks and hence glassy‐state motions for all the polymers are very similar. However, the intensities of the TriBPA‐PC and TABPA‐BPA‐PC γ peaks are reduced by an amount that closely matches the reduced volume fraction of carbonate units in the two new polymers. Finally, for comm‐BPA‐PC, the breakdown strength is strongly affected by sample history and this is assumed to be related to volatile components in the material. It is found that the breakdown strengths for TriBPA‐PC and TABPA‐BPA‐PC are relatively close to that for rp‐BPA‐PC with the value for TriBPA‐PC being slightly larger than that for rp‐BPA‐PC or the value usually reported for typical capacitor grade polycarbonate. Finally, it is shown that the real part of the relative permittivity remains relatively constant from low temperatures to Tg. Consequently, based on the dielectric properties, TriBPA‐PC and TABPA‐BPA‐PC should be usable in capacitors to at least 50 °C higher than BPA‐PC. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

9.
Surface tension and viscosity of molten vanadium were measured over a wide temperature range by the oscillating drop method in an electrostatic levitation furnace. Over the (2023 to 2517) K temperature range, the surface tension can be expressed as γ(T)/(10?3 N/m) = 1935 ? 0.27 {(T ? Tm)/K} with Tm = 2183 K. Over the same temperature span, the viscosity can be expressed as η(T)/(10?3 Pa · s) = 1.23exp[2.27 · 104/(RTK?1)], where R is the gas constant.  相似文献   

10.
Experimental results of dielectric investigations for solutions of the three butanediols {2,3-butanediol (2,3BD), 1,3-butanediol (1,3BD), and 1,4-butanediol (1,4BD)}, in 1,4-dioxane (1,4DX) are reported for various mole fractions at T = 298.2 K. Values of relative permittivity were measured at 100 kHz. The molecular dipole moments were determined using Guggenheim method. The variations of effective dipole moment and correlation factor, g, with mole fraction in these materials were investigated using Kirkwood–Frohlich equation. Dielectric measurements were also carried out on binary polar mixtures of the butanediols with 2-ethyl-1-hexanol (2EH) for various concentrations at T = 298.2 K. The Kirkwood correlation factor, the Bruggeman factor, and the excess permittivity were determined.  相似文献   

11.
The diffusion of ferrocene methanol in super-cooled aqueous solutions containing sucrose has been studied, using disk and cylindrical microelectrodes, over a wide viscosity range. The solution viscosity and the reduced temperature T/Tg (Tg being the glass transition temperature) were varied by changing the sucrose concentration and the temperature of the system. The voltammetric limiting current obtained with a disk microelectrode and the i(t) response on a cylindrical microelectrode after a potential step were used to determine diffusion coefficients from 7 × 10−6 cm2 s−1 down to 2 × 10−11 cm2 s−1. The electrochemical procedure described in this work allows a simple and accurate measurement of the dynamics of electroactive solutes in glass-forming liquids.  相似文献   

12.
Four (solid–solid) phase transitions were detected in the temperature range of (9 to 300) K in polycrystalline [Cr(NH3)6](BF4)3 at TC1 = 240.7 K, TC2 = 108.0 K, TC3 = 91.9 K, and TC4 = 61.3 K by adiabatic calorimetry. The measurements by relaxation calorimetry were followed on lowering temperature from 20 K down to 0.35 K under six different external magnetic field values (9, 7, 5, 3, 1 and 0) T. For non-zero values of applied magnetic field well-defined Schottky anomaly appears. Magnetic heat capacity was calculated assuming the zero-field splitting for the decoupled Cr(III) ions. There is no discrepancy between the observed and calculated values. Isothermal magnetization curve recorded up to 5 T was measured at temperature of 1.8 K.  相似文献   

13.
Se96Sn4 chalcogenide glass was prepared by melt quenching technique and exposed, at room temperature, to different doses of 4, 8, 12, 24 and 33 kGy of high-energy 60Co gamma irradiation. Differential scanning calorimeter (DSC) was used under non-isothermal condition to determine the glass transition temperature Tg, onset Tc and peak Tp temperatures of crystallization, of un-irradiated and γ-irradiated samples, at four different heating rates. The variation of Tg with heating rates was utilized to calculate the glass transition activation energy Et for un-irradiated and γ-irradiated glass, using the methods suggested by Kissinger and Moynihan. Based on the obtained values of the characteristic temperatures Tg, Tc and Tp, thermal stability was monitored through the calculation of the S parameter and the crystallization rate factor 〈Kp〉 for irradiated and un-irradiated glass. Results reveal that, as γ-dose increases Tg increases up to 12 kGy then decreases at higher doses but remains more than that of un-irradiated glass. Meanwhile, both Et and 〈Kp〉 attain their minimum values at the same dose of 12 kGy and the glass is thermally stable at this particular dose.  相似文献   

14.
High-quality epitaxial thin films of the ferromagnetic metallic oxide SrRuO3 (SRO) were fabricated by dc-sputtering at high oxygen pressure and their structural and magnetoelectrical properties were carefully studied. The films featured a Curie temperature TC  160 K and a magnetic moment of ~0.7 μB per Ru ion. The temperature dependent magnetization could be well described by the scaling relation M(T)  (TC ? T)β with a critical exponent β = 0.53 over the entire ferromagnetic temperature range. A negative magnetoresistance, MR, on the order of a few percent was found up to room temperature. MR showed a maximum of ~4% right at TC where a kink structure of the resistivity, ρ, at zero field was flattened out on magnetic field application. This ρ contribution could be related to scattering due to orientational disorder of the Ru magnetic moments which become aligned by an external magnetic field. In addition, an equally strong MR effect, related to localization phenomena, could be observed at lower temperature. Particularly, the second MR peak at ~35 K might be related to a Fermi-liquid to non-Fermi-liquid crossover. A scaling behavior dρ/dT  |T ? TC|α was observed only above TC. Here, values for the exponent α  ?0.4 and α  ?1.4 were obtained in zero field and in a field of 9 T, respectively. The commonly observed ρ minimum, appearing at low temperatures (~3 K in the present case), is correlated with the structural disorder of the SRO films and is believed to have its origin in quantum corrections to the conductivity (QCC).  相似文献   

15.
The Knudsen mass-loss effusion technique was used to measure the vapour pressures at different temperatures of the following compounds: 3-phenylpropionic acid, between T =  305.17 K and T =  315.17 K; 3-(2-methoxyphenyl)propionic acid, between T =  331.16 K and T =  347.16 K; 3-(4-methoxyphenyl)propionic acid, between T =  341.19 K and T =  357.15 K; 3-(3,4-dimethoxyphenyl)propionic acid, between T =  352.18 K and T =  366.16 K. From the temperature dependence of the vapour pressure, the standard molar enthalpies of sublimation ΔcrgHmowere derived by the Clausius–Clapeyron equation and the molar entropies of sublimation at equilibrium pressures were calculated. On the basis of estimated values for the heat capacity differences between the gas and the crystal phases of the studied compounds the standard, p   =  105Pa, molar enthalpies, entropies and Gibbs energies of sublimation at T =  298.15 K, were derived:  相似文献   

16.
The formulation of appropriate dental adhesives is critical to achieve efficient polymerisation and reduced fluid permeability. The aim of this study was to evaluate the degree of conversion, the crosslink density and the fluid permeability of experimental 2-Hydroxyethyl methacrylate (HEMA)-containing or HEMA-free resin adhesives formulated with the use of a hydrophilic ternary photoinitiator system (DPIHP: diphenyliodonium hexafluorophosphate). The final FTIR/Raman degree of conversion (DC), DSC glass transition temperature (Tg) and the resin permeability (rP) were then characterised. The inclusion of the hydrophilic ionic salt DPIHP increased the affinity between amphiphilic monomers and binary photoinitiator system enhancing the DC, Tg and the resistance to fluid permeability (p < 0.05). A significant correlation was observed between rP and FTIR/Raman-DC or Tg (p < 0.05). In conclusion, new generation resin adhesives containing hydrophilic monomers and solvents should be formulated on a ternary photoinitiator system including hydrophilic ionic accelerator in order to achieve enhanced physical–chemical characteristics especially when light-cured in a relatively short period time (10–20 s).  相似文献   

17.
The investigation of the glass transition in materials that become too viscous or are difficult to prepare in a solid compact form, is not straightforward using dynamic mechanical analysis, DMA. In this work, metallic pockets are used to envelop samples in order to resolve the loss factor peak, tan δ, in the region of Tg. Experiments with indium were carried out at different heating rates in order to correct the temperature in such isochronal measurements. The proof of concept of the utility of such methodology was done by investigating the glass transition dynamics of poly(d,l-lactic acid), PDLLA, a biodegradable amorphous polyester widely investigated for biomedical applications. The glass transition peaks obtained at scanning rates below 4 °C min?1 shifted to the same temperature region after correction. DMA tests on PDLLA at different frequencies allowed construction of a relaxation plot where the glass transition dynamics followed Vogel–Fulcher–Tamman–Hesse behaviour. Inclusion complexes, ICs, of PDLLA with α-cyclodextrin were obtained, exhibiting a very organized arrangement at the nano-scale level. DMA experiments on the ICs powder packed in the metallic pocket revealed a loss factor peak located at a higher temperature as compared with PDLLA, indicating that the segmental mobility of the polymer chains is highly restricted in this supra-molecular organization.  相似文献   

18.
Here, we have measured the glass transition temperature (Tg) of the ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate–H2O mixed solutions as a function of H2O concentration (x mol% H2O). The glass-forming composition region was also determined. Contrary to the results of the quaternary ammonium type of ionic liquid, N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate–H2O mixed solutions, we did not observed the multiple glass transition behaviour. We also measured the glassy Raman spectra of the solutions at T = 77 K. We find that the “nearly free” hydrogen bonded Raman band of water molecules in the aqueous [bmim][BF4] solution exists up to around x = 60 mol% H2O, even at T = 77 K.  相似文献   

19.
Measurements of the isobaric specific heat capacities for {xCH3OH + (1  x)H2O} with x = (1.0000, 0.7943, 0.4949, 0.2606, 0.1936, 0.1010, and 0.0496) were carried out by the calorimeter with the thermal relaxation method, which we have developed, at T = (280, 320, and 360) K in the pressure range from (0.1 to 15) MPa. The present cp measurements for (methanol + water) show mole fraction dependence at constant temperature with the maximum, and the maximum shifts to greater values of mole fraction with increasing temperature. Pressure dependence of the present measurements is insignificant. Temperature dependence increases with increasing mole fraction.  相似文献   

20.
Densities (ρ) and viscosities (η) of aqueous 1-methylpiperazine (1-MPZ) solutions are reported at T = (298.15 to 343.15) K. Refractive indices (nD) are reported at T = (293.15 to 333.15) K, and surface tensions (γ) are reported at T = (298.15 to 333.15) K. Derived excess properties, except excess viscosities (Δη), are found to be negative over the entire composition range. The addition of 1-MPZ reduces drastically the surface tension of water. The temperature dependence of surface tensions is explained in terms of surface entropy (SS) and enthalpy (HS). The measured and derived properties are used to probe the microscopic liquid structure of the bulk and surface of the aqueous amine solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号