首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For higher-order gradient crystal plasticity, a finite deformation formulation is presented. The theory does not deviate much from the conventional crystal plasticity theory. Only a back stress effect and additional differential equations for evolution of the geometrically necessary dislocation (GND) densities supplement the conventional theory within a non-work-conjugate framework in which there is no need to introduce higher-order microscopic stresses that would be work-conjugate to slip rate gradients. We discuss its connection to a work-conjugate type of finite deformation gradient crystal plasticity that is based on an assumption of the existence of higher-order stresses. Furthermore, a boundary-value problem for simple shear of a constrained thin strip is studied numerically, and some characteristic features of finite deformation are demonstrated through a comparison to a solution for the small deformation theory. As in a previous formulation for small deformation, the present formulation applies to the context of multiple and three-dimensional slip deformations.  相似文献   

2.
The higher-order stress work-conjugate to slip gradient in single crystals at small strains is derived based on the self-energy of geometrically necessary dislocations (GNDs). It is shown that this higher-order stress changes stepwise as a function of in-plane slip gradient and therefore significantly influences the onset of initial yielding in polycrystals. The higher-order stress based on the self-energy of GNDs is then incorporated into the strain gradient plasticity theory of Gurtin [2002. A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 50, 5-32] and applied to single-slip-oriented 2D and 3D model crystal grains of size D. It is thus found that the self-energy of GNDs gives a D-1-dependent term for the averaged resolved shear stress in such a model grain under yielding. Using published experimental data for several polycrystalline metals, it is demonstrated that the D-1-dependent term successfully explains the grain size dependence of initial yield stress and the dislocation cell size dependence of flow stress in the submicron to several-micron range of grain and cell sizes.  相似文献   

3.
Gradient theories, as a regularized continuum mechanics approach, have found wide applications for modeling strain localization failure process. This paper presents a second gradient stress–strain damage elasticity theory based upon the method of virtual power. The theory considers the strain gradient and its conjugated double stresses. Instead of introducing an intrinsic material length scale into the constitutive law in an ad hoc fashion, a microstructural granular mechanics approach is applied to derive the higher-order constitutive coefficients such that the internal length scale parameter reflects the natural granularity of the underlying material microstructure. The derivations of the required damage constitutive relationships, the strong form governing equations as well as its weak form for the second gradient model are described. The recently popularized Element-Free Galerkin (EFG) method is then employed to discretize the weak form equilibrium equation for accommodating the resultant higher-order continuity requirements and further handling the mesh sensitivity problem. Numerical examples for shear band simulations show that the proposed second gradient continuum model can produce stable, accurate as well as mesh-size independent solutions without a priori assumption of the shear band path.  相似文献   

4.
The equations governing mechanics and electrostatics are formulated for a system in which the material deformations and electrostatic polarizations are arbitrary. A mechanical/electrostatic energy balance is formulated for this situation in terms of the electric enthalpy, in which the electric potential and the electric field are the independent variables, and charge and electric displacement, respectively, are the conjugate thermodynamic forces. This energy statement is presented in the form of a principle of virtual work (PVW), in which external virtual work is equated to internal virtual work. The resulting expression involves an internal material virtual work in which (1) material polarization is work-conjugate to increments of electric field, and (2) a combination of Cauchy stress, Maxwell stress and a product of polarization and electric field is work-conjugate to increments of strain. This PVW is valid for all material types, including those that are conservative and those that are dissipative. Such a virtual work expression is the basis for a rigorous formulation of a finite element method for problems involving the deformation and electrostatic charging of materials, including electroactive polymers and switchable ferroelectrics. The internal virtual work expression is used to develop the structure of conservative constitutive laws governing, for example, electroactive elastomers and piezoelectric materials, thereby determining the form of the Maxwell or electrostatic stress. It is shown that the Maxwell or electrostatic stress has a form fully constrained by the constitutive law and cannot be chosen independently of it. The structure of constitutive laws for dissipative materials, such as viscoelastic electroactive polymers and switchable ferroelectrics, is similarly determined, and it is shown that the Maxwell or electrostatic stress for these materials is identical to that for a material having the same conservative response when the dissipative processes in the material are shut off. The form of the internal virtual work is used further to develop the structure of dissipative constitutive laws controlled by rearrangement of material internal variables.  相似文献   

5.
In recent years there have been many papers that considered the effects of material length scales in the study of mechanics of solids at micro- and/or nano-scales. There are a number of approaches and, among them, one set of papers deals with Eringen's differential nonlocal model and another deals with the strain gradient theories. The modified couple stress theory, which also accounts for a material length scale, is a form of a strain gradient theory. The large body of literature that has come into existence in the last several years has created significant confusion among researchers about the length scales that these various theories contain. The present paper has the objective of establishing the fact that the length scales present in nonlocal elasticity and strain gradient theory describe two entirely different physical characteristics of materials and structures at nanoscale. By using two principle kernel functions, the paper further presents a theory with application examples which relates the classical nonlocal elasticity and strain gradient theory and it results in a higher-order nonlocal strain gradient theory. In this theory, a higher-order nonlocal strain gradient elasticity system which considers higher-order stress gradients and strain gradient nonlocality is proposed. It is based on the nonlocal effects of the strain field and first gradient strain field. This theory intends to generalize the classical nonlocal elasticity theory by introducing a higher-order strain tensor with nonlocality into the stored energy function. The theory is distinctive because the classical nonlocal stress theory does not include nonlocality of higher-order stresses while the common strain gradient theory only considers local higher-order strain gradients without nonlocal effects in a global sense. By establishing the constitutive relation within the thermodynamic framework, the governing equations of equilibrium and all boundary conditions are derived via the variational approach. Two additional kinds of parameters, the higher-order nonlocal parameters and the nonlocal gradient length coefficients are introduced to account for the size-dependent characteristics of nonlocal gradient materials at nanoscale. To illustrate its application values, the theory is applied for wave propagation in a nonlocal strain gradient system and the new dispersion relations derived are presented through examples for wave propagating in Euler–Bernoulli and Timoshenko nanobeams. The numerical results based on the new nonlocal strain gradient theory reveal some new findings with respect to lattice dynamics and wave propagation experiment that could not be matched by both the classical nonlocal stress model and the contemporary strain gradient theory. Thus, this higher-order nonlocal strain gradient model provides an explanation to some observations in the classical and nonlocal stress theories as well as the strain gradient theory in these aspects.  相似文献   

6.
Gradient plasticity theories are of utmost importance for accounting for size effects in metals, especially on the grain scale. Today, there are several methods used to derive the governing equations for the additional degrees of freedom in gradient plasticity theories. Here, the equivalence between an extended principle of virtual power and an extended energy balance is shown. The energy balance of a Boltzmann continuum is supplemented by contributions based on a scalar-valued degree of freedom. It is considered to be invariant with respect to a change of observer. This yields unambiguously the existence of a corresponding micro-stress vector, which is presumed from the outset in the context of an extended principle of virtual power. A thermodynamically consistent nonlocal evolution equation for the additional, scalar-valued degree of freedom is obtained by evaluation of the dissipation inequality in terms of the Clausius–Duhem inequality. Partitioning the nonlocal flow rule yields a partial differential equation, often referred to as micro-force balance. The approach presented is applied to derive a slip gradient crystal plasticity theory regarding single slip. Finally, the distribution of the plastic slip is exemplified with respect to a laminate material consisting of an elastic and an elastoplastic phase.  相似文献   

7.
Standard plasticity models cannot capture the microstructural size effect associated with grain sizes, as well as structural size effects induced by external boundaries and overall gradients. Many higher-order plasticity models introduce a length scale parameter to resolve the latter limitation – microstructural influences are not explicitly account for. This paper adopts two distinct length scales in the formulation, i.e. an intrinsic length scale (l) governing micro-processes such as dislocation pile-up at internal boundaries, as well as the characteristic grain size (L), and aims to unravel the interaction between these two length scales and the characteristic specimen size (H) at the macro level. At the meso-scale, we adopt the strain gradient plasticity model developed in Gurtin (2004) [Gurtin, M.E., 2004. A gradient theory of small-deformation isotropic plasticity that accounts for the Burgers vector and for dissipation due to plastic spin. J. Mech. Phys. Solids 52, 2545–2568] which accounts for the direct influence of grain boundaries. Through a novel homogenization theory, the plasticity model is translated consistently from meso to macro. The two length scale parameters (l and L) manifest themselves naturally at the macro scale, hence capturing both types of size effects in an average sense. The resulting (macro) higher-order model is thermodynamically consistent to the meso model, and has the same structure as a micromorphic continuum. Finally, we consider a bending example for the two limiting cases – microhard and microfree conditions at grain boundaries – and illustrate the excellent match between the meso and homogenized solutions.  相似文献   

8.
Using a nonstandard version of the principle of virtual power, we develop general balance equations and boundary conditions for second-grade materials. Our results apply to both solids and fluids as they are independent of constitutive equations. As an application of our results, we discuss flows of incompressible fluids at small-length scales. In addition to giving a generalization of the Navier–Stokes equations involving higher-order spatial derivatives, our theory provides conditions on free and fixed boundaries. The free boundary conditions involve the curvature of the free surface; among the conditions for a fixed boundary are generalized adherence and slip conditions, each of which involves a material length scale. We reconsider the classical problem of plane Poiseuille flow for generalized adherence and slip conditions.  相似文献   

9.
In the small deformation range, we consider crystal and isotropic “higher-order” theories of strain gradient plasticity, in which two different types of size effects are accounted for: (i) that dissipative, entering the model through the definition of an effective measure of plastic deformation peculiar of the isotropic hardening function and (ii) that energetic, included by defining the defect energy (i.e., a function of Nye's dislocation density tensor added to the free energy; see, e.g., [Gurtin, M.E., 2002. A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 50, 5–32]). In order to compare the two modellings, we recast both of them into a unified deformation theory framework and apply them to a simple boundary value problem for which we can exploit the Γ-convergence results of [Bardella, L., Giacomini, A., 2008. Influence of material parameters and crystallography on the size effects describable by means of strain gradient plasticity. J. Mech. Phys. Solids 56 (9), 2906–2934], in which the crystal model is made isotropic by imposing that any direction be a possible slip system. We show that the isotropic modelling can satisfactorily approximate the behaviour described by the isotropic limit obtained from the crystal modelling if the former constitutively involves the plastic spin, as in the theory put forward in Section 12 of [Gurtin, M.E., 2004. A gradient theory of small-deformation isotropic plasticity that accounts for the Burgers vector and for dissipation due to plastic spin. J. Mech. Phys. Solids 52, 2545–2568]. The analysis suggests a criterium for choosing the material parameter governing the plastic spin dependence into the relevant Gurtin model.  相似文献   

10.
We study thermomechanical deformations of a viscoplastic body deformed in simple shear. The effect of material elasticity is neglected but that of work hardening, strain-rate hardening, thermal softening, and strain-rate gradients is considered. The consideration of strain-rate gradients introduces a material characteristic length into the problem. A homogeneous solution of the governing equations is perturbed at different values t0 of time t, and the growth rate at time t0 of perturbations of different wavelengths is computed. Following Wright and Ockendon's postulate that the wavelength of the dominant instability mode with the maximum growth rate at time t0 determines the minimum spacing between shear bands, the shear band spacing is computed. It is found that for the shear band spacing to be positive, either the thermal conductivity or the material characteristic length must be positive. Approximate analytical expressions for locally adiabatic deformations of dipolar (strain-rate gradient-dependent) materials indicate that the shear band spacing is proportional to the square-root of the material charateristic length, and the fourth root of the strain-rate hardening exponent. The shear band spacing increases with an increase in the strain hardening exponent and the thermal conductivity of the material.  相似文献   

11.
Experiments and theory in strain gradient elasticity   总被引:2,自引:0,他引:2  
Conventional strain-based mechanics theory does not account for contributions from strain gradients. Failure to include strain gradient contributions can lead to underestimates of stresses and size-dependent behaviors in small-scale structures. In this paper, a new set of higher-order metrics is developed to characterize strain gradient behaviors. This set enables the application of the higher-order equilibrium conditions to strain gradient elasticity theory and reduces the number of independent elastic length scale parameters from five to three. On the basis of this new strain gradient theory, a strain gradient elastic bending theory for plane-strain beams is developed. Solutions for cantilever bending with a moment and line force applied at the free end are constructed based on the new higher-order bending theory. In classical bending theory, the normalized bending rigidity is independent of the length and thickness of the beam. In the solutions developed from the higher-order bending theory, the normalized higher-order bending rigidity has a new dependence on the thickness of the beam and on a higher-order bending parameter, bh. To determine the significance of the size dependence, we fabricated micron-sized beams and conducted bending tests using a nanoindenter. We found that the normalized beam rigidity exhibited an inverse squared dependence on the beam's thickness as predicted by the strain gradient elastic bending theory, and that the higher-order bending parameter, bh, is on the micron-scale. Potential errors from the experiments, model and fabrication were estimated and determined to be small relative to the observed increase in beam's bending rigidity. The present results indicate that the elastic strain gradient effect is significant in elastic deformation of small-scale structures.  相似文献   

12.
A link is shown to exist between the so-called residual-based strain gradient plasticity theory and the analogous theories based on the (extended) virtual work principle (VWP). To this aim, the former theory is reformulated and cast in a residual-free form, whereby the insulation condition and the (nonlocal) Clausius–Duhem inequality, on which the theory is grounded, are substituted with equivalent residual-free ingredients, namely the energy balance condition and the residual-free form of the Clausius–Duhem inequality. The equivalence of the residual-free formulation to the original one is shown, also in their ability to cope with energetic size effects and interfacial energy ones. It emerges that the residual-free form of the Clausius–Duhem inequality coicides with the way the second thermodynamics principle is enforced within the VWP-based theories, and also that the energy balance condition amounts to the extended VWP enforced in the whole body. This makes the residual-free formulation possess strong similarities with the more general VWP-based theories, such as it constitutes an assessment of the existing link, which can be synthetized by the statement: the insulation condition is equivalent to the extended VWP deprived by the content of the standard principle.  相似文献   

13.
The solutions of a boundary value problem are explored for various classes of generalised crystal plasticity models including Cosserat, strain gradient and micromorphic crystal plasticity. The considered microstructure consists of a two-phase laminate containing a purely elastic and an elasto-plastic phase undergoing single or double slip. The local distributions of plastic slip, lattice rotation and stresses are derived when the microstructure is subjected to simple shear. The arising size effects are characterised by the overall extra back stress component resulting from the action of higher order stresses, a characteristic length lc describing the size-dependent domain of material response, and by the corresponding scaling law ln as a function of microstructural length scale, l. Explicit relations for these quantities are derived and compared for the different models. The conditions at the interface between the elastic and elasto-plastic phases are shown to play a major role in the solution. A range of material parameters is shown to exist for which the Cosserat and micromorphic approaches exhibit the same behaviour. The models display in general significantly different asymptotic regimes for small microstructural length scales. Scaling power laws with the exponent continuously ranging from 0 to −2 are obtained depending on the values of the material parameters. The unusual exponent value −2 is obtained for the strain gradient plasticity model, denoted “curl Hp” in this work. These results provide guidelines for the identification of higher order material parameters of crystal plasticity models from experimental data, such as precipitate size effects in precipitate strengthened alloys.  相似文献   

14.
Under small strains and rotations, we apply a phenomenological higher-order theory of distortion gradient plasticity to the torsion problem, here assumed as a paradigmatic benchmark of small-scale plasticity. Peculiar of the studied theory, proposed about ten years ago by Morton E. Gurtin, is the constitutive inclusion of the plastic spin, affecting both the free energy and the dissipation. In particular, the part of the free energy, called the defect energy, which accounts for Geometrically Necessary Dislocations, is a function of Nye's dislocation density tensor, dependent on the plastic distortion, including the plastic spin. For the specific torsion problem, we implement this distortion gradient plasticity theory into a Finite Element (FE) code characterised by implicit (Backward Euler) time integration, numerically robust and accurate for both viscoplastic and rate-independent material responses. We show that, contrariwise to other higher-order theories of strain gradient plasticity (neglecting the plastic spin), the distortion gradient plasticity can predict some strengthening even if a quadratic defect energy is chosen. On the basis of the results of many FE analyses, concerned with (i) cyclic loading, (ii) switch in the higher-order boundary conditions during monotonic plastic loading, (iii) the use of non-quadratic defect energies, and (iv) the prediction of experimental data, we mainly show that (a) including the plastic spin contribution in a gradient plasticity theory is highly recommendable to model small-scale plasticity, (b) less-than-quadratic defect energies may help in describing the experimental results, but they may lead to anomalous cyclic behaviour, and (c) dissipative (unrecoverable) higher-order finite stresses are responsible for an unexpected mechanical response under non-proportional loading.  相似文献   

15.
Cellular solids inherit their macroscopic mechanical properties directly from the cellular microstructure. However, the characteristic material length scale is often not small compared to macroscopic dimensions, which limits the applicability of classical continuum-type constitutive models. Cosserat theory, however, offers a continuum framework that naturally features a length scale related to rotation gradients. In this paper a homogenization procedure is proposed that enables the derivation of macroscopic Cosserat constitutive equations based on the underlying microstructural morphology and material behavior. To cite this article: P.R. Onck, C. R. Mecanique 330 (2002) 717–722.  相似文献   

16.
多晶金属弹粘塑性的取向元模型   总被引:2,自引:0,他引:2  
基于“三维组集式本构模型”[1~3],运用功共轭原理和场平均方法,发展了一种“取向元”概念——多晶聚集体内具有相同取向的滑移系集的一个体积平均意义上的代表性元素;由一维的率(粘性)敏感“取向元”,通过在取向空间里的积分,获得了三维的弹粘塑性本构方程式,并模拟了蠕变和松弛现象.与以往的粘塑性模型相比,本文模型不仅能同时考虑多晶金属材料的率相关性和路径相关性,而且由于引入了物理机制,因而具有较强的预测能力.数值算例也展示了该模型的合理性  相似文献   

17.
In the presence of plastic slip gradients, compatibility requires gradients in elastic rotation and stretch tensors. In a crystal lattice the gradient in elastic rotation can be related to bond angle changes at cores of so-called geometrically necessary dislocations. The corresponding continuum strain energy density can be obtained from an interatomic potential that includes two- and three-body terms. The three-body terms induce restoring moments that lead to a couple stress tensor in the continuum limit. The resulting stress and couple stress jointly satisfy a balance law. Boundary conditions are obtained upon stress, couple stress, strain and strain gradient tensors. This higher-order continuum theory was formulated by Toupin (Arch. Ration. Mech. Anal. 11 (1962) 385). Toupin's theory has been extended in this work to incorporate constitutive relations for the stress and couple stress under multiplicative elastoplasticity. The higher-order continuum theory is exploited to solve a boundary value problem of relevance to single crystal and polycrystalline nano-devices. It is demonstrated that certain slip-dominated deformation mechanisms increase the compliance of nanostructures in bending-dominated situations. The significance of these ideas in the context of continuum plasticity models is also dwelt upon.  相似文献   

18.
吴振  徐铮 《计算力学学报》2014,31(3):345-350
通过考虑横法向热变形,本文建立了预先满足层间应力连续的C0型整体-局部高阶层合梁理论,并用于分析复合材料层合梁热膨胀和热弯曲问题。虽然考虑了横法向应变,不增加额外的位移变量。此理论位移场不含有横向位移一阶导数,便于构造多节点高阶单元。基于虚功原理推导了复合材料层合梁平衡方程,并分析了简支多层复合材料梁热膨胀和热弯曲问题。数值结果表明,建立的模型能准确分析复合材料层合梁热膨胀和热弯曲问题,忽略横法向应变的理论分析热膨胀问题误差较大。  相似文献   

19.
In this study we develop a gradient theory of small-deformation single-crystal plasticity that accounts for geometrically necessary dislocations (GNDs). The resulting framework is used to discuss grain boundaries. The grains are allowed to slip along the interface, but growth phenomenona and phase transitions are neglected. The bulk theory is based on the introduction of a microforce balance for each slip system and includes a defect energy depending on a suitable measure of GNDs. The microforce balances are shown to be equivalent to nonlocal yield conditions for the individual slip systems, yield conditions that feature backstresses resulting from energy stored in dislocations. When applied to a grain boundary the theory leads to concomitant yield conditions: relative slip of the grains is activated when the shear stress reaches a suitable threshold; plastic slip in bulk at the grain boundary is activated only when the local density of GNDs reaches an assigned threshold. Consequently, in the initial stages of plastic deformation the grain boundary acts as a barrier to plastic slip, while in later stages the interface acts as a source or sink for dislocations. We obtain an exact solution for a simple problem in plane strain involving a semi-infinite compressed specimen that abuts a rigid material. We view this problem as an approximation to a situation involving a grain boundary between a grain with slip systems aligned for easy flow and a grain whose slip system alignment severely inhibits flow. The solution exhibits large slip gradients within a thin layer at the grain boundary.  相似文献   

20.
In this paper, we discuss various formats of gradient elasticity and their performance in static and dynamic applications. Gradient elasticity theories provide extensions of the classical equations of elasticity with additional higher-order spatial derivatives of strains, stresses and/or accelerations. We focus on the versatile class of gradient elasticity theories whereby the higher-order terms are the Laplacian of the corresponding lower-order terms. One of the challenges of formulating gradient elasticity theories is to keep the number of additional constitutive parameters to a minimum. We start with discussing the general Mindlin theory, that in its most general form has 903 constitutive elastic parameters but which were reduced by Mindlin to three independent material length scales. Further simplifications are often possible. In particular, the Aifantis theory has only one additional parameter in statics and opens up a whole new field of analytical and numerical solution procedures. We also address how this can be extended to dynamics. An overview of length scale identification and quantification procedures is given. Finite element implementations of the most commonly used versions of gradient elasticity are discussed together with the variationally consistent boundary conditions. Details are provided for particular formats of gradient elasticity that can be implemented with simple, linear finite element shape functions. New numerical results show the removal of singularities in statics and dynamics, as well as the size-dependent mechanical response predicted by gradient elasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号