首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The equilibrium geometries and bond dissociation energies of 16‐valence‐electron(VE) complexes [(PMe3)2Cl2M(E)] and 18‐VE complexes [(PMe3)2(CO)2M(E)] with M=Fe, Ru, Os and E=C, Si, Ge, Sn were calculated by using density functional theory at the BP86/TZ2P level. The nature of the M? E bond was analyzed with the NBO charge decomposition analysis and the EDA energy‐decomposition analysis. The theoretical results predict that the heavier Group 14 complexes [(PMe3)2Cl2M(E)] and [(PMe3)2(CO)2M(E)] with E=Si, Ge, Sn have C2v equilibrium geometries in which the PMe3 ligands are in the axial positions. The complexes have strong M? E bonds which are slightly stronger in the 16‐VE species 1ME than in the 18‐VE complexes 2ME . The calculated bond dissociation energies show that the M? E bonds become weaker in both series in the order C>Si>Ge>Sn; the bond strength increases in the order Fe<Ru<Os for 1ME , whereas a U‐shaped trend Ru<Os<Fe is found for 2ME . The M? E bonding analysis suggests that the 16‐VE complexes 1ME have two electron‐sharing bonds with σ and π symmetry and one donor–acceptor π bond like the carbon complex. Thus, the bonding situation is intermediate between a typical Fischer complex and a Schrock complex. In contrast, the 18‐VE complexes 2ME have donor–acceptor bonds, as suggested by the Dewar–Chatt–Duncanson model, with one M←E σ donor bond and two M→E π‐acceptor bonds, which are not degenerate. The shape of the frontier orbitals reveals that the HOMO?2 σ MO and the LUMO and LUMO+1 π* MOs of 1ME are very similar to the frontier orbitals of CO.  相似文献   

2.
Density functional calculations at the BP86/TZ2P level were carried out to understand the ligand properties of the 16‐valence‐electron(VE) Group 14 complexes [(PMe3)2Cl2M(E)] ( 1ME ) and the 18‐VE Group 14 complexes [(PMe3)2(CO)2M(E)] ( 2ME ; M=Fe, Ru, Os; E=C, Si, Ge, Sn) in complexation with W(CO)5. Calculations were also carried out for the complexes (CO)5W–EO. The complexes [(PMe3)2Cl2M(E)] and [(PMe3)2(CO)2M(E)] bind strongly to W(CO)5 yielding the adducts 1ME–W(CO)5 and 2ME–W(CO)5 , which have C2v equilibrium geometries. The bond strengths of the heavier Group 14 ligands 1ME (E=Si–Sn) are uniformly larger, by about 6–7 kcal mol?1, than those of the respective EO ligand in (CO)5W‐EO, while the carbon complexes 1MC–W(CO)5 have comparable bond dissociation energies (BDE) to CO. The heavier 18‐VE ligands 2ME (E=Si–Sn) are about 23–25 kcal mol?1 more strongly bonded than the associated EO ligand, while the BDE of 2MC is about 17–21 kcal mol?1 larger than that of CO. Analysis of the bonding with an energy‐decomposition scheme reveals that 1ME is isolobal with EO and that the nature of the bonding in 1ME–W(CO)5 is very similar to that in (CO)5W–EO. The ligands 1ME are slightly weaker π acceptors than EO while the π‐acceptor strength of 2ME is even lower.  相似文献   

3.
M(CO)5X (M = Mn, Re; X = Cl, Br, I) reacts with DAB (1,4-diazabutadiene = R1N=C(R2)C(R2)′=NR′1) to give M(CO)3X(DAB). The 1H, 13C NMR and IR spectra indicate that the facial isomer is formed exclusively. A comparison of the 13C NMR spectra of M(CO)3X(DAB) (M = Mn, Re; X = Cl, Br, I; DAB = glyoxalbis-t-butylimine, glyoxyalbisisopropylimine) and the related M(CO)4DAB complexes (M = Cr, Mo, W) with Fe(CO)3DAB complexes shows that the charge density on the ligands is comparable in both types of d6 metal complexes but is slightly different in the Fe-d8 complexes. The effect of the DAB substituents on the carbonyl stretching frequencies is in agreement with the A′(cis) > A″ (cis) > A′(trans) band ordering.Mn(CO)3Cl(t-BuNCHCHNt-Bu) reacts with AgBF4 under a CO atmosphere yielding [Mn(CO)4(t-BuNCHCHN-t-Bu)]BF4. The cationic complex is isoelectronic with M(CO)4(t-BuNCHCHNt-Bu) (M = Cr, Mo, W).  相似文献   

4.
The complexes M(CO)2(PPh3)3 (I, M = Fe; II, M = Ru) readily react with H2 at room temperature and atmospheric pressure to give cis-M(H)2(CO)2(PPh3)2 (III, M = Fe;IV,M = Ru). I reacts with O2 to give an unstable compound in solution, in a type of reaction known to occur with II which leads to cis-Ru(O2)(CO)2(PPh3)2(V). Even compound IV reacts with O2 to give V with displacement of H2; this reaction has been shown to be reversible and this is the first case where the displacement of H2 by O2 and that of O2 by H2 at a metal center has been observed. III and IV are reduced to M(CO)3(PPh3)2 by CO with displacement of H2; Ru(CO)3- (PPh3)2 is also formed by treatment of IV with CO2, but under higher pressure. Compounds II and IV react with CH2CHCN to give Ru(CH2CHCN)(CO)2- (PPh3)2(VI) which reacts with H2 to reform the hydride IV.cis-Ru(H)2(CO)2(PPh3)2(IV) has been studied as catalyst in the hydrogenation and isomerization of a series of monoenes and dienes. The catalysts are poisoned by the presence of free triphenylphosphine. On the other hand the ready exchange of H2 and O2 on the “Ru(CO)2(PPh3)2” moiety makes IV a catalyst not irreversibly poisoned by the presence of air. It has been found that even Ru(CO)2(PPh3)3(II) acts as a catalyst for the isomerization of hex-1-ene at room temperature under an inert atmosphere.  相似文献   

5.
The pentacarbonylhalogene complexes [XM(CO)5] (M = Mn, Re; X = Cl, Br) ( 1a – 2b ) react with 2,2‐dimethylaziridine by thermally induced substitution reaction to give the neutral bis‐aziridine complexes [M(X)(CO)3Az2] (Az = N(H)C2H2Me2) ( 3a – 4b ). As a result of the X‐ray structure analyses, the metal atoms are octahedrally configurated in the facial arrangement; the intact three‐membered rings coordinate through their distorted tetrahedrally configurated N atoms. All compounds 3a – 4b are stable with respect to the directed thermal alkene elimination to give the corresponding nitrene complexes (CO)4(X)M=NH; their IR, 1H and 13C{1H} NMR, and MS spectra are reported and discussed.  相似文献   

6.
Structures and spectroscopic characterization of the divalent complexes cis‐dibromidotetrakis(2,6‐dimethylphenyl isocyanide)iron(II) dichloromethane 0.771‐solvate, [FeBr2(C9H9N)4]·0.771CH2Cl2 or cis‐FeBr2(CNXyl)4·0.771CH2Cl2 (Xyl = 2,6‐dimethylphenyl), trans‐dibromidotetrakis(2,6‐dimethylphenyl isocyanide)iron(II), [FeBr2(C9H9N)4] or trans‐FeBr2(CNXyl)4, trans‐dibromidotetrakis(2,6‐dimethylphenyl isocyanide)cobalt(II), [CoBr2(C9H9N)4] or trans‐CoBr2(CNXyl)4, and trans‐dibromidobis(2,6‐dimethylphenyl isocyanide)nickel(II), [NiBr2(C9H9N)2] or trans‐NiBr2(CNXyl)2, are presented. Additionally, crystals grown from a cold diethyl ether solution of zero‐valent Fe(CNXyl)5 produced a structure containing a cocrystallization of mononuclear Fe(CNXyl)5 and the previously unknown dinuclear [Fe(CNXyl)3]22‐CNXyl)3, namely pentakis(2,6‐dimethylphenyl isocyanide)iron(0) tris(μ2‐2,6‐dimethylphenyl isocyanide)bis[tris(2,6‐dimethylphenyl isocyanide)iron(0)], [Fe(C9H9N)5][Fe2(C9H9N)9]. The (M)C—N—C(Xyl) angles of the isocyanide ligand are nearly linear for the metals in the +2 oxidation state, for which the ligands function essentially as pure donors. The νCN stretching frequencies for these divalent metal isocyanides are at or above that of the free ligand. Relative to FeII, in the structure containing iron in the formally zero‐valent oxidation state, the Fe—C bond lengths have shortened, the C[triple‐bond]N bond lengths have elongated, the (M)C—N—C(Xyl) angles of the terminal CNXyl ligands are more bent, and the νCN stretching frequencies have shifted to lower energies, all indicative of substantial M(dπ)→π* backbonding.  相似文献   

7.
The single‐crystal X‐ray structure determinations of the title complexes, cis‐di­chloro‐trans‐di­methyl‐cis‐bis(N‐methyl­pyr­rolidin‐2‐one‐O)­tin(IV), [Sn(CH3)2Cl2(C5H9NO)2], cis‐di­bromo‐trans‐di­methyl‐cis‐bis(N‐methyl­pyrrolidin‐2‐one‐O)tin­(IV), [SnBr2(CH3)2(C5H9NO)2], and cis‐di­iodo‐trans‐di­methyl‐cis‐bis(N‐methyl­pyrrolidin‐2‐one‐O)­tin(IV), [Sn(CH3)2I2(C5H9NO)2], show that those tin complexes in which coordination of the lactam ligand to SnIV is realized via oxygen exhibit a distorted octahedral geometry.  相似文献   

8.
New complexes {M(CO)4[Ph2P(S)P(S)Ph2]} (M = Cr, Mo and W), (1a)–(3a), [(1a), M = Cr; (2a), M = Mo; (3a), M = W] and {M2(CO)10[-Ph2P(S)P(S)Ph2]} (M = Cr, Mo, W), [(1b)–(3b) [(1b), M = Cr; (2b), M = Mo; (3b), M = W]] have been prepared by the photochemical reaction of M(CO)6 with Ph2P(S)P(S)Ph2 and characterized by elemental analyses, f.t.-i.r. and 31P-(1H)-n.m.r. spectroscopy and by FAB-mass spectrometry. The spectra suggest cis-chelate bidentate coordination of the ligand in {M(CO)4[Ph2P(S)P(S)Ph2]} and cis-bridging bidentate coordination of the ligand between two metals in (M = Cr, Mo and W).  相似文献   

9.
Syntheses of the copper and gold complexes [Cu{Fe(CO)5}2][SbF6] and [Au{Fe(CO)5}2][HOB{3,5-(CF3)2C6H3}3] containing the homoleptic carbonyl cations [M{Fe(CO)5}2]+ (M=Cu, Au) are reported. Structural data of the rare, trimetallic Cu2Fe, Ag2Fe and Au2Fe complexes [Cu{Fe(CO)5}2][SbF6], [Ag{Fe(CO)5}2][SbF6] and [Au{Fe(CO)5}2][HOB{3,5-(CF3)2C6H3}3] are also given. The silver and gold cations [M{Fe(CO)5}2]+ (M=Ag, Au) possess a nearly linear Fe-M-Fe’ moiety but the Fe-Cu-Fe’ in [Cu{Fe(CO)5}2][SbF6] exhibits a significant bending angle of 147° due to the strong interaction with the [SbF6] anion. The Fe(CO)5 ligands adopt a distorted square-pyramidal geometry in the cations [M{Fe(CO)5}2]+, with the basal CO groups inclined towards M. The geometry optimization with DFT methods of the cations [M{Fe(CO)5}2]+ (M=Cu, Ag, Au) gives equilibrium structures with linear Fe-M-Fe’ fragments and D2 symmetry for the copper and silver cations and D4d symmetry for the gold cation. There is nearly free rotation of the Fe(CO)5 ligands around the Fe-M-Fe’ axis. The calculated bond dissociation energies for the loss of both Fe(CO)5 ligands from the cations [M{Fe(CO)5}2]+ show the order M=Au (De=137.2 kcal mol−1)>Cu (De=109.0 kcal mol−1)>Ag (De=92.4 kcal mol−1). The QTAIM analysis shows bond paths and bond critical points for the M−Fe linkage but not between M and the CO ligands. The EDA-NOCV calculations suggest that the [Fe(CO)5]→M+←[Fe(CO)5] donation is significantly stronger than the [Fe(CO)5]←M+→[Fe(CO)5] backdonation. Inspection of the pairwise orbital interactions identifies four contributions for the charge donation of the Fe(CO)5 ligands into the vacant (n)s and (n)p AOs of M+ and five components for the backdonation from the occupied (n-1)d AOs of M+ into vacant ligand orbitals.  相似文献   

10.
Perfluoromethyl Element Ligands. XLIII [1] Novel Synthetic Routes to Binuclear Complexes of the Type MM′(CO)8ER2X (M/M′ = Mn/Mn, Mn/Re, Re/Re; E = P, As; R = CF3, Me; X = Hal, ) Mn(CO)5I reacts with compounds of the type (CF3)2EAsMe2 (E = P, As) as with the symmetric E2(CF3)4 ligands in the first step with cleavage of the E‐As bond to yield the pro ducts (CO)5MnE(CF3)2 and Me2AsI. Reaction of the mononuclear complexes with excess of Mn(CO)5I leads in good yields to the known dinuclear compounds (CO)4Mn[E(CF3)2, I]Mn(CO)4 and CO. Me2AsI, the second product of the EAs cleavage, attacks the starting compound Mn(CO)5I giving cis‐Mn(CO)4I(AsMe2I) and CO. This result encouraged us to thoroughly investigate the preparation of cis‐M(CO)4X(EMe2Y) complexes with most of the possible combinations of M = Mn, Re; E = P, As and X, Y = Cl, Br, I. An alternative route to these compounds was opened by the cleavage of the dinuclear manganese or rhenium halides M2(CO)8X2 with the halophosphanes or ‐arsanes Me2EY. This route was found to be especially advantageous for the preparation of the rheniumcarbonyl precursors, since milder conditions than for the CO‐substitution in Re(CO)5X compounds are sufficient for the halogen‐bridged dinuclear complexes. Cis‐M(CO)4X(EMe2Y) complexes were used as precursors for the synthesis of novel homo‐ and heterodinuclear complexes of the type (CO)4M(EMe2, X)M′(CO)4 by reacting the EY function with transition metal carbonylates Kat[M′(CO)5] (Kat = Na, Bu4N, Ph4As). Thus the preparation of a wide range of complexes was possible, which before had been successfully prepared by the direct reaction of Mn2(CO)10 with Me2EX only in few cases, e. g. with Me2AsI. Spectroscopic investigations, using the CO valence frequencies and the 1H‐NMR data of the ligands EMe2Y or of the Me2E bridges, were applied to study the influence of the variables M, M′, E, X, Y and Kat on the reactivity of the mononuclear complexes and the bonding situation in both the mono‐ and the dinuclear systems. The new compounds were characterized by spectroscopic (IR, NMR, MS) and analytic methods (C, H).  相似文献   

11.
The 13C NMR spectra of cis-M(CO)4X2 and M′(CO)5X (M = Fe, Ru, Os; M′ = Mn, Re; X = H, I) and cis·Os(CO)4Me2 are reported. Variable temperature spectra demonstrated the stereochemical nonrigidity of cis-Fe(CO)4H2 and the stereochemical rigidity of the rest. The carbonyl averaging process in cis-Fe(CO)4H2 occurs without ligand dissociation. Improved syntheses of some of these derivatives are also given.  相似文献   

12.
Perfluoromethyl Element Ligands. XXX. Reactions of the Metal Hydridesπ-C5H5(CO)3MH (M = Cr, Mo, W) with Organoelement-Element Compounds of the Type R2 EER2 and RE′ ′E ′R (E = P, As; E′ = S, Se; R = CH3, CF3) Cleavage reactions of R2EER2 and RE′E′R, respectively, (E = P, As; E′ = S, Se; R = CH3, CF3) with complexes π-C5H5(CO)3MH (M = Cr, Mo, W) are used (a) to prepare known and novel complex subsituted phosphanes, arsanes, sulfanes, or selanes π-C5H5(CO)3MER2 (I) and π-C5H5(CO)3ME′R (II), respectively, (b) to study the reactivity trends as a function of E, E′, R, and M (see Inhaltsübersicht). The tendency observed for the formation of the binuclear complexes [π-C5H5(CO)2MER2]2 and [π-C5H5(CO)2ME′R]2, respectively, in following reactions of I and II increases in the series W ? Mo ≤ Cr and SeCF3 < As(CF3)2 < SCF3 ≈ P(CF3)2 < SeMe < AsMe2 ?; PMe2 ≈ SMe.  相似文献   

13.
The reaction of less than one equivalent of [Rh2Cl2(nbd)2] with [Ru4H(CO)12BH], which contains a semi-interstitial boron atom, yields the heterometallic boride clustercis-[Rh2Ru4H(CO)12(nbd)2B] which has been characterized by spectroscopic and X-ray diffraction methods. The cluster has an octahedral core, consistent with an 86 electron count. Deprotonation yields the conjugate basecis-[Rh2Ru4(CO)12(nbd)2B] which has been isolated and fully characterized as the [(Ph3P)2N]+ salt. There is little structural perturbation upon going fromcis-[Rh2Ru4H(CO)12(nbd)2B] tocis-[Rh2Ru4(CO)12(nbd)2B] and neither cluster shows a tendency for the formation of thetrans skeletal isomer in contrast to the analogous carbonyl clustercis-[Rh2Ru4(CO)16B]. If the reaction of [Rh2Cl2(nbd)2] with [Ru4H(CO)12BH] is allowed to proceed for 30 min and [R 3PAuCl] (R=Ph, C6H11, 2-MeC6H4) is then added, the clusterscis-[Rh2Ru4(CO)12(nbd)2B(AuPR3)] andcis-[Rh2Ru4(CO)14(nbd)B(AuPR3)] are formed in yields that are dependent upon the initial reaction period. The single crystal structures ofcis-[Rh2Ru4(CO)12(nbd)2B(AuPPh3)] andcis-[Rh2Ru4(CO)14(nbd)B(AuPPh3)] are reported. In contrast to their all-carbonyl analoguescis-[Rh2Ru4(CO)16B(AuPR 3)] (R=Ph or C6H11), the nbd derivatives do not undergocistrans skeletal isomerism.  相似文献   

14.
The preparation of the bidentate ligand 2, 11-bis(diphenylarsinomethyl)benzo-[c]-phenanthrene ( 1 ) is described. This ligand reacts with appropriate substrates to give mononuclear square planar complexes of type [MX2( 1 )] (M = Pd, Pt; X = Cl, Br, I) and [M′Cl(CO)( 1 )] (M′ = Rh, Ir) in which ligand 1 spans trans-positions. This is confirmed by the crystal structure of [PtCl2( 1 )]. 1H-NMR. spectra of the complexes are discussed and compared with those of model compounds trans-[MCl2( 12 )2] (M = Pd, Pt) and [M'Cl(CO)( 12 )2] (M′ = Rh, Ir; 12 = AsBzPh2).  相似文献   

15.
A new series of cationic heterodinuclear complexes, [M1M2Cl2(meso-dpmppp)(RNC)2]PF6 (M1=Ni, M2=Rh, R=tBu ( 1 a ); M1=Pd, M2=Rh, R=tBu ( 2 a ), Xyl ( 2 b ); M1=Pt, M2=Rh, R=tBu ( 3 a ), Xyl ( 3 b ); M1=Pd, M2=Ir, R=tBu ( 4 a )), supported by a tetradentate phosphine ligand, meso-Ph2PCH2P(Ph)(CH2)3P(Ph)CH2PPh2 (meso-dpmppp), were synthesized by stepwise reactions of meso-dpmppp with NiCl2 ⋅ 6H2O or MCl2(cod) (M=Pd, Pt), forming mononuclear metalloligands of [M1Cl2(meso-dpmppp)], and with [M2Cl(cod)]2 (M2=Rh, Ir) and RNC (R=tBu, Xyl) in the presence of [NH4][PF6]. The related neutral PdRh complex, [PdRhCl3(meso-dpmppp)(XylNC)] ( 5 ), was also prepared. The structures of 1 – 5 were determined by X-ray analyses to contain two square planar d8 metal centers with face-to-face arrangement, where meso-dpmppp supports M1 and M2 metal ions in cis/trans-P,P coordination mode, combining cis-{M1P2Cl2} and trans-{M2P2(CNR)2} units. Complexes 1 – 4 showed an intence characteristic absorption around 422–464 nm derived from RhI→RNC MLCT transition (HOMO→LUMO+1), which are influenced by changing M1 (NiII, PdII, PtII) metal ions since HOMO composed of dσ* orbitals appreciably destabilized by changing M1 from Ni to Pd, and Pt. The electronic structures of 1 a – 4 a were investigated on the basis of DFT calculations and NBO analyses to show weak but noticeable d8–d8 metallophilic interaction as empirical dispersion energy of 0.9–1.5 kcal/mol without M1–M2 covalent bonding interaction. In addition, 1 – 5 were utilized as catalysts for hydrosilylation of styrene, and the NiRh complex 1 a was found to show higher activity and chemo- and regioselectivity compared with 2 – 5 .  相似文献   

16.
The reaction of Cp2MCl2 complexes (M=Ti and Zr) with 2 equiv. of (OC)3Mn(η15-C5H4)Fe(CO)25-C5H4COONa) results in the formation of the pentanuclear complexes (OC)3Mn(η15-C5H4)Fe(CO)25-C5H4CO2)]2M(η5-C5H5)2, which are characterized by IR and1H NMR spectroscopy and cyclic voltammetry. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 1055–1058, May, 1997.  相似文献   

17.
Heteronuclear Metal Atom Clusters of the Types X4?n[SnM(CO)4P(C6H5)3]n and M2(CO)8[μ-Sn(X)M(CO)4P(C6H5)3]2 by Reaction of SnX2 with M2(CO)8[P(C6H5)3]2 (X = Halogene; M = Mn, Re; n = 2, 3) The compounds of the both types X4?n[SnM(CO)4P(C6H5)3]n (n = 3; M = Mn; X = F, Cl, Br, I. n = 2: M = Mn, Re; X = Cl, Br, I) and M2(CO)8[μ-Sn(X)M(CO)4P(C6H5)3]2 (M = Mn; X = Cl, I. M = Re; X = Cl, Br, I) are prepared by reaction of SnX2 with M2(CO)8[P(C6H5)3]2 (M = Mn, Re). Their IR frequencies are assigned. In Re2(CO)8[μ-Sn(Cl)Re(CO)4P(C6H5)3]2 the central molecule fragment contains a planar Re2Sn2 rhombus with a transannular Re? Re bond of 316.0(2) pm. Each of the SnIV atoms is connected with the terminal ligands Cl and Re(CO)4P(C6H5)3. These ligands are in transposition with respect to the Re2Sn2 ring. The mean values for the remaining bond distances (pm) are: Sn? Re = 274.0(3); Sn? Cl = 243(1), Re? C = 176(5), Re? P = 242.4(9), C? O = 123(5). The factors with an influence on the geometrical shape of such M2Sn2 rings (M = transition metal) are discussed.  相似文献   

18.
Reaction of [MX(CO)2(η7-C7H7)] (M=Mo, X=Br; M=W, X=I) with two equivalents of CNBut in toluene affords the trihapto-bonded cycloheptatrienyl complexes [MX(CO)2(CNBut)2(η3-C7H7)] (1, M=Mo, X=Br; 2, M=W, X=I). The X-ray crystal structure of 2 reveals a pseudo-octahedral molecular geometry with an asymmetric ligand arrangement at tungsten in which one CNBut is located trans to the η3-C7H7 ring. Treatment of 2 with tetracyanoethene results in 1,4-cycloaddition at the η3-C7H7 ring to give [WI(CO)2(CNBut)2{η3-C9H7(CN)4}], 3. The principal reaction type of the molybdenum complex 1 is loss of carbonyl and bromide ligands to afford substituted products [MoBr(CNBut)2(η7-C7H7)] 4 or [Mo(CO)(CNBut)2(η7-C7H7)]Br. Reaction of [MoBr(CO)2(η7-C7H7)] with one equivalent of CNBut in toluene at 60°C affords [MoBr(CO)(CNBut)(η7-C7H7)], 5, which is a precursor to [Mo(CO)(CNBut)(NCMe)(η7-C7H7)][BF4], 6, by reaction with Ag[BF4] in acetonitrile. In contrast with the parent dicarbonyl systems [MoX(CO)2(η7-C7H7)], complexes of the Mo(CO)(CNBut)(η7-C7H7) auxiliary, 5 and 6, do not afford observable η3-C7H7 products by ligand addition at the molybdenum centre.  相似文献   

19.
1H‐1, 3‐Benzazaphospholes react with M(CO)5(THF) (M = Cr, Mo, W) to give thermally and relatively air stable η1‐(1H‐1, 3‐Benzazaphosphole‐P)M(CO)5 complexes. The 1H‐ and 13C‐NMR‐data are in accordance with the preservation of the phosphaaromatic π‐system of the ligand. The strong upfield 31P coordination shift, particularly of the Mo and W complexes, forms a contrast to the downfield‐shifts of phosphine‐M(CO)5 complexes and classifies benzazaphospholes as weak donor but efficient acceptor ligands. Nickelocene reacts as organometallic species with metalation of the NH‐function. The resulting ambident 1, 3‐benzazaphospholide anions prefer a μ2‐coordination of the η5‐CpNi‐fragment at phosphorus to coordination at nitrogen or a η3‐heteroallyl‐η5‐CpNi‐semisandwich structure. This is shown by characteristic NMR data and the crystal structure analysis of a η5‐CpNi‐benzazaphospholide. The latter is a P‐bridging dimer with a planar Ni2P2 ring and trans‐configuration of the two planar heterocyclic phosphido ligands arranged perpendicular to the four‐membered ring.  相似文献   

20.
N,N-Bis(3,5-dimethylpyrazol-1-yl)methane (H2CPz'2) reacts with the hexacarbonyls of chromium, molybdenum, and tungsten to give cis-(H2CPz'2)M(CO)4 derivatives with M=Cr, Mo, W. The direct allyl bromination of these complexes is also investigated and only the molybdenum complex is converted into (H2CPz'2)Mo(CO)2(π-C3H3)(Br).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号