首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
We study the boundedness and a priori bounds of global solutions of the problem Δu=0 in Ω×(0, T), (∂u/∂t) + (∂u/∂ν) = h(u) on ∂Ω×(0, T), where Ω is a bounded domain in ℝN, ν is the outer normal on ∂Ω and h is a superlinear function. As an application of our results we show the existence of sign-changing stationary solutions. © 1997 B. G. Teubner Stuttgart–John Wiley & Sons Ltd.  相似文献   

2.
For the equation K(t)u xx + u tt b 2 K(t)u = 0 in the rectangular domain D = “(x, t)‖ 0 < x < 1, −α < t < β”, where K(t) = (sgnt)|t| m , m > 0, and b > 0, α > 0, and β > 0 are given real numbers, we use the spectral method to obtain necessary and sufficient conditions for the unique solvability of the boundary value problem u(0, t) = u(1, t), u x (0, t) = u x (1, t), −αtβ, u(x, β) = φ(x), u(x,−α) = ψ(x), 0 ≤ x ≤ 1.  相似文献   

3.
Let k(y) > 0, 𝓁(y) > 0 for y > 0, k(0) = 𝓁(0) = 0 and limy → 0k(y)/𝓁(y) exists; then the equation L(u) ≔ k(y)uxx – ∂y(𝓁(y)uy) + a(x, y)ux = f(x, y, u) is strictly hyperbolic for y > 0 and its order degenerates on the line y = 0. Consider the boundary value problem Lu = f(x, y, u) in G, u|AC = 0, where G is a simply connected domain in ℝ2 with piecewise smooth boundary ∂G = ABACBC; AB = {(x, 0) : 0 ≤ x ≤ 1}, AC : x = F(y) = ∫y0(k(t)/𝓁(t))1/2dt and BC : x = 1 – F(y) are characteristic curves. Existence of generalized solution is obtained by a finite element method, provided f(x, y, u) satisfies Carathéodory condition and |f(x, y, u)| ≤ Q(x, y) + b|u| with QL2(G), b = const > 0. It is shown also that each generalized solution is a strong solution, and that fact is used to prove uniqueness under the additional assumption |f(x, y, u1) – f(x, y, u2| ≤ C|u1u2|, where C = const > 0.  相似文献   

4.
In this paper we study the following problem: ut−Δu=−f(u) in Ω×(0, T)≡QT, ∂u ∂n=g(u) on ∂Ω×(0, T)≡ST, u(x, 0)=u0(x) in Ω , where Ω⊂ℝN is a smooth bounded domain, f and g are smooth functions which are positive when the argument is positive, and u0(x)>0 satisfies some smooth and compatibility conditions to guarantee the classical solution u(x, t) exists. We first obtain some existence and non-existence results for the corresponding elliptic problems. Then, we establish certain conditions for a finite time blow-up and global boundedness of the solutions of the time-dependent problem. Further, we analyse systems with same kind of boundary conditions and find some blow-up results. In the last section, we study the corresponding elliptic problems in one-dimensional domain. Our main method is the comparison principle and the construction of special forms of upper–lower solutions using related equations. © 1998 B. G. Teubner Stuttgart—John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, we consider the Cauchy problem: (ECP) ut−Δu+p(x)u=u(x,t)∫u2(y,t)/∣x−y∣dy; x∈ℝ3, t>0, u(x, 0)=u0(x)⩾0 x∈ℝ3, (0.2) The stationary problem for (ECP) is the famous Choquard–Pekar problem, and it has a unique positive solution ū(x) as long as p(x) is radial, continuous in ℝ3, p(x)⩾ā>0, and limx∣→∞p(x)=p¯>0. In this paper, we prove that if the initial data 0⩽u0(x)⩽(≢)ū(x), then the corresponding solution u(x, t) exists globally and it tends to the zero steady-state solution as t→∞, if u0(x)⩾(≢)ū(x), then the solution u(x,t) blows up in finite time. © 1997 B. G. Teubner Stuttgart–John Wiley & Sons Ltd.  相似文献   

6.
It is proved that there is a (weak) solution of the equation ut=a*uxx+b*g(ux)x+f, on ℝ+ (where * denotes convolution over (−∞, t)) such that ux is locally bounded. Emphasis is put on having the assumptions on the initial conditions as weak as possible. The kernels a and b are completely monotone and if a(t)=t−α, b(t)=t−β, and g(ξ)∼sign(ξ)∣ξ∣γ for large ξ, then the main assumption is that α>(2γ+2)/(3γ+1)β+(2γ−2)/(3γ+1). © 1997 by B. G. Teubner Stuttgart–John Wiley & Sons Ltd.  相似文献   

7.
This paper is concerned with the asymptotic behaviors of the solutions to the initial-boundary value problem for scalar viscous conservations laws ut + f(u)x = uxx on [0, 1], with the boundary condition u(0, t) = u(t) → u, u(1, t) = u+(t) → u+, as t → +∞ and the initial data u(x,0) = u0(x) satisfying u0(0) = u(0), u0(1) = u+(1), where u± are given constants, uu+ and f is a given function satisfying f″(u) > 0 for u under consideration. By means of an elementary energy estimates method, both the global existence and the asymptotic behavior are obtained. When uu+, which corresponds to rarefaction waves in inviscid conservation laws, no smallness conditions are needed. While for u > u+, which corresponds to shock waves in inviscid conservation laws, it is established for weak shock waves, that is, |uu+| is small. Moreover, when u±(t) ≡ u±, t ≥ 0, exponential decay rates are both obtained.  相似文献   

8.
We present an algorithm for approximating the solution of the degenerate diffusion problem ut = (?(u))xx in (0,1) × R+ (with zero Dirichlet boundary conditions, and nonnegative initial datum u0), where ?(u) = min {ku1} for some ? > 0. The algorithm also provides an approximation for the interface curves which represent the boundary of the Mushy Region ?? = {(x, t): ? (u(x, t)) = 1}. The convergence of the algorithm is proved.  相似文献   

9.
An Application of a Mountain Pass Theorem   总被引:3,自引:0,他引:3  
We are concerned with the following Dirichlet problem: −Δu(x) = f(x, u), x∈Ω, uH 1 0(Ω), (P) where f(x, t) ∈C (×ℝ), f(x, t)/t is nondecreasing in t∈ℝ and tends to an L -function q(x) uniformly in x∈Ω as t→ + ∞ (i.e., f(x, t) is asymptotically linear in t at infinity). In this case, an Ambrosetti-Rabinowitz-type condition, that is, for some θ > 2, M > 0, 0 > θF(x, s) ≤f(x, s)s, for all |s|≥M and x∈Ω, (AR) is no longer true, where F(x, s) = ∫ s 0 f(x, t)dt. As is well known, (AR) is an important technical condition in applying Mountain Pass Theorem. In this paper, without assuming (AR) we prove, by using a variant version of Mountain Pass Theorem, that problem (P) has a positive solution under suitable conditions on f(x, t) and q(x). Our methods also work for the case where f(x, t) is superlinear in t at infinity, i.e., q(x) ≡ +∞. Received June 24, 1998, Accepted January 14, 2000.  相似文献   

10.
This paper is concerned with the construction of accurate continuous numerical solutions for partial self-adjoint differential systems of the type (P(t) ut)t = Q(t)uxx, u(0, t) = u(d, t) = 0, u(x, 0) = f(x), ut(x, 0) = g(x), 0 ≤ xd, t >- 0, where P(t), Q(t) are positive definite oRr×r-valued functions such that P′(t) and Q′(t) are simultaneously semidefinite (positive or negative) for all t ≥ 0. First, an exact theoretical series solution of the problem is obtained using a separation of variables technique. After appropriate truncation strategy and the numerical solution of certain matrix differential initial value problems the following question is addressed. Given T > 0 and an admissible error ϵ > 0 how to construct a continuous numerical solution whose error with respect to the exact series solution is smaller than ϵ, uniformly in D(T) = {(x, t); 0 ≤ xd, 0 ≤ tT}. Uniqueness of solutions is also studied.  相似文献   

11.
The non-characteristic Cauchy problem for the heat equation uxx(x,t) = u1(x,t), 0 ? x ? 1, ? ∞ < t < ∞, u(0,t) = φ(t), ux(0, t) = ψ(t), ? ∞ < t < ∞ is regularizèd when approximate expressions for φ and ψ are given. Properties of the exact solution are used to obtain an explicit stability estimate.  相似文献   

12.
We consider the asymptotic behavior of the solutions ofscaled convection-diffusion equations ∂ t u ɛ (t, x) = κΔ x (t, x) + 1/ɛV(t2,xɛ) ·∇ x u ɛ (t, x) with the initial condition u ɛ(0,x) = u 0(x) as the parameter ɛ↓ 0. Under the assumptions that κ > 0 and V(t, x), (t, x) ∈R d is a d-dimensional,stationary, zero mean, incompressible, Gaussian random field, Markovian and mixing in t we show that the laws of u ɛ(t,·), t≥ 0 in an appropriate functional space converge weakly, as ɛ↓ 0, to a δ-type measureconcentrated on a solution of a certain constant coefficient heat equation. Received: 23 March 2000 / Revised version: 5 March 2001 / Published online: 9 October 2001  相似文献   

13.
We study the global existence, asymptotic behaviour, and global non‐existence (blow‐up) of solutions for the damped non‐linear wave equation of Kirchhoff type in the whole space: utt+ut=(a+b∥∇u2γu+∣uαu in ℝN×ℝ+ for a, b⩾0, a+b>0, γ⩾1, and α>0, with initial data u(x, 0)=u0(x) and ut(x, 0)=u1(x). Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
In three spaces, we obtain exact classical solutions of the boundary-value periodic problem u tta 2 u xx=g(x,t), u(0,t)=u(π,t)=0, u(x,t+T)=u(x,t)=0, x,t∈ĝ Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 50, No. 11, pp. 1537–1544, November, 1998.  相似文献   

15.
ANOTEONTHEBEHAVIOROFBLOW┐UPSOLUTIONSFORONE┐PHASESTEFANPROBLEMSZHUNINGAbstract.Inthispaper,thefolowingone-phaseStefanproblemis...  相似文献   

16.
The aim of this paper is to investigate the behaviour as t→∞ of solutions to the Cauchy problem ut−Δut−νΔu−(b, ∇u)=∇⋅F(u), u(x, 0)=u0(x), where ν>0 is a fixed constant, t⩾0, x∈ℝn. First, we prove that if u is the solution to the linearized equation, i.e. with ∇⋅F(u)≡0, then u decays like a solution for the analogous problem to the heat equation. Moreover, the long-time behaviour of u is described by the heat kernel. Next, analogous results are established for the non-linear equation with some assumptions imposed on F, p, and the initial condition u0. © 1997 by B.G. Teubner Stuttgart-John Wiley & Sons, Ltd.  相似文献   

17.
We consider the periodic boundary-value problem u tt u xx = g(x, t), u(0, t) = u(π, t) = 0, u(x, t + ω) = u(x, t). By representing a solution of this problem in the form u(x, t) = u 0(x, t) + ũ(x, t), where u 0(x, t) is a solution of the corresponding homogeneous problem and ũ(x, t) is the exact solution of the inhomogeneous equation such that ũ(x, t + ω) u x = ũ(x, t), we obtain conditions for the solvability of the inhomogeneous periodic boundary-value problem for certain values of the period ω. We show that the relation obtained for a solution includes known results established earlier. __________ Translated from Ukrains'kyi Matematychnyi Zhurnal, Vol. 57, No. 7, pp. 912–921, July, 2005.  相似文献   

18.
In this piece of work, we introduce a new idea and obtain stability interval for explicit difference schemes of O(k2+h2) for one, two and three space dimensional second-order hyperbolic equations utt=a(x,t)uxx+α(x,t)ux-2η2(x,t)u,utt=a(x,y,t)uxx+b(x,y,t)uyy+α(x,y,t)ux+β(x,y,t)uy-2η2(x,y,t)u, and utt=a(x,y,z,t)uxx+b(x,y,z,t)uyy+c(x,y,z,t)uzz+α(x,y,z,t)ux+β(x,y,z,t)uy+γ(x,y,z,t)uz-2η2(x,y,z,t)u,0<x,y,z<1,t>0 subject to appropriate initial and Dirichlet boundary conditions, where h>0 and k>0 are grid sizes in space and time coordinates, respectively. A new idea is also introduced to obtain explicit difference schemes of O(k2) in order to obtain numerical solution of u at first time step in a different manner.  相似文献   

19.
Parabolic partial differential equations with overspecified data play a crucial role in applied mathematics and engineering, as they appear in various engineering models. In this work, the radial basis functions method is used for finding an unknown parameter p(t) in the inverse linear parabolic partial differential equation ut = uxx + p(t)u + φ, in [0,1] × (0,T], where u is unknown while the initial condition and boundary conditions are given. Also an additional condition ∫01k(x)u(x,t)dx = E(t), 0 ≤ tT, for known functions E(t), k(x), is given as the integral overspecification over the spatial domain. The main approach is using the radial basis functions method. In this technique the exact solution is found without any mesh generation on the domain of the problem. We also discuss on the case that the overspecified condition is in the form ∫0s(t) u(x,t)dx = E(t), 0 < tT, 0 < s(t) < 1, where s and E are known functions. Some illustrative examples are presented to show efficiency of the proposed method. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

20.
We consider the equation y m u xx u yy b 2 y m u = 0 in the rectangular area {(x, y) | 0 < x < 1, 0 < y < T}, where m < 0, b ≥ 0, T > 0 are given real numbers. For this equation we study problems with initial conditions u(x, 0) = τ(x), u y (x, 0) = ν(x), 0 ≤ x ≤ 1, and nonlocal boundary conditions u(0, y) = u(1, y), u x (0, y) = 0 or u x (0, y) = u x (1, y), u(1, y) = 0 with 0≤yT. Using the method of spectral analysis, we prove the uniqueness and existence theorems for solutions to these problems  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号