首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The new ternary compounds Rb4Ti3S14, Cs4Zr3S14, K4Hf3Se14, and K4ZrHf2Se14 were prepared by reacting the respective transition metals in alkali metal polychalcogenide melts. Two crystallographically independent transition metal cations are present that are coordinated by eight chalcogen atoms (Q) in an irregular fashion or by seven chalcogen atoms yielding a distorted pentagonal bipyramid. The M(1)Q8 and M(2)Q7 polyhedra are connected by sharing common edges or trigonal faces leading to the formation of infinite linear one‐dimensional anionic chains running parallel to the [101] direction. The chains are separated by alkali metal cations. The optical band gaps determined are 1.59 eV for Rb4Ti3S14, 2.35 eV for Cs4Zr3S14, and 2.02 eV for K4Hf3Se14. In‐situ X‐ray powder diffractometry demonstrates that Rb4Ti3S14 decomposes at 430 °C into Rb2S5 and TiS. During the cooling cycle the re‐formation of the polysulfide is observed. According to this result the polysulfide could be prepared using TiS instead of metallic Ti as well.  相似文献   

2.
Preparation and Crystal Structure of the Dialkali Metal Trichalcogenides Rb2S3, Rb2Se3, Cs2S3, and Cs2Se3 Crystalline products were obtained by the reaction of the pure alkali metals with the chalcogens in the molar ratio 2:3 in liquid ammonia at pressures up to 3000 bar and temperatures around 600 K. The substances crystallize in the K2S3 type structure (space group Cmc21(NO. 36)). Unit cell constants see ?Inhaltsübersicht”?. The characteristic feature of this structure are bent polyanions X32?:(X = S,Se). The new described compounds are compared with the other known alkali metal trichalcogenides.  相似文献   

3.
The crystalline isotypic solvates Rb4Sn4·2NH3, Cs4Sn4·2NH3, and Rb4Pb4·2NH3 have been synthesized using the direct reduction of elemental tin or tetraphenyltin, respectively, with heavier alkali metals or the dissolution of the binary phase RbPb in liquid ammonia. These compounds contain the cluster ions [Sn4]4– or [Pb4]4– respectively. This is the first time that[Tt4]4– ions (Tt = tetrels) are detected as result of a solution reaction. The accommodation of the ammonia molecules, which build up ion‐dipole interactions to alkali metal cations, requires some modifications of the crystal structures compared to the binary phases RbSn, CsSn, and RbPb. The tetrahedral [Tt4]4– anions have a slightly lower coordination by Rb+ or Cs+ cations and, furthermore, the intercluster distances show a remarkable increase.  相似文献   

4.
Inhaltsübersicht. Die Verbindungen K2MnS2, Rb2MnS2, Cs2MnS2, K2MnSe2, Rb2MnSe2, Cs2MnSe2, K2MnTe2, Rb2MnTe2 und Cs2MnTe2 wurden durch Umsetzungen von Alkalimetall-carbonaten mit Mangan bzw. Mangantellurid in einem mit Chalkogen beladenen Wasserstoffstrom erhalten. Kristallstrukturuntersuchungen an Einkristallen ergaben, daß alle neun Verbindungen isotyp kristallisieren (K2ZnO2-Typ, Raumgruppe Ibam). Untersuchungen zum magnetischen Verhalten zeigen antiferromagnetische Kopplungen der Manganionen in den [MnX4/22–]-Ketten, On Alkali Metal Manganese Chalcogenides A2MnX2 with A K, Rb, or Cs and X S, Se, or Te The compounds K2MnS2, Rb2MnS2, Cs2MnS2, K2MnSe2, Rb2MnSe2, Cs2MnSe2, K2MnTe2, Rb2MnTe2, and Cs2MnTe2 were synthesized by the reaction of alkali metal carbonates with Mn or MnTe in a stream of hydrogen charged with chalcogen. Structural investigations on single crystals show that all nine compounds crystallize in isotypic atomic arrangements (K2ZnO2 type, space group Ibam). The magnetic behaviour indicates antiferromagnetic interactions of the manganese ions within the [MnX1/22–] chains.  相似文献   

5.
On Hexafluoroferrates(III): Cs2TlFeF6, Cs2KFeF6, Rb2KFeF6, Rb2NaFeF6, and Cs2NaFeF6 New prepared are the compounds Cs2TlFeF6 (a = 9.211 Å), Cs2KFeF6 (a = 9.041 Å), Rb2KFeF6 (a = 8.868 Å) and Rb2NaFeF6 (a = 8.46 4Å) all cubic Elpasolithes as well as Cs2NaFeF6 (Cs2NaCrF6?type, hexagonal with a = 6.281, c = 30.532 Å), all colourless. Cs2KFeF6 was measured magnetically (70–297,2 K). The spectra of reflection were measured (9000–36000 cm?1). The Madelung Part of Lattice Energy, MAPLE, is calculated and discussed.  相似文献   

6.
Magnetochemistry of Divalent Silver. New Fluoroargentates(II): Cs2AgF4, Rb2AgF4, and K2AgF4 Hitherto unknown blue compounds Rb2AgF4 and Cs2AgF4 are prepared. Guinier patterns show, that Cs2AgF4 cristallise in the K2NiF4 structure (a = 4.581, c = 14.192 Å). The structure of the Rb-compound is still unknown. The magnetic behaviour of K2AgF4, Rb2AgF4, and Cs2AgF4 is discussed.  相似文献   

7.
On the Crystal Structure of Rb2C2 and Cs2C2 By reaction of rubidium or caesium solved in liquid ammonia with acetylene AC2H with A = Rb, Cs was obtained, which was subsequently converted into the binary acetylide A2C2 in vacuum at temperatures of 520 K (Rb2C2) and 470 K (Cs2C2) using a surplus of the respective alkali metal. The crystal structures of the very air sensitive compounds were solved and refined by a combination of both neutron and X‐ray powder diffraction data. Rb2C2 as well as Cs2C2 coexist in two modifications. The hexagonal modification (P 6 2m, Z = 3) crystallises in the known Na2O2 structure type with two crystallographic independent sites for the C22– dumbbells. For the orthorhombic modification (Pnma, Z = 4) a new structure type was found, which is related to the PbCl2 structure type with ordered C22– dumbbells occupying the Pb sites. Temperature dependent investigations between 4 K and the decomposition temperature by the means of neutron and X‐ray powder diffraction resulted in a very complex dynamic disorder of the C2 dumbbells, which is still not completely understood. The frequencies of the C–C stretching vibration determined by the help of Raman spectroscopy fit nicely to the results obtained for other alkali metal acetylides and alkali metal hydrogen acetylides. These results seem to indicate that the electronegativity of the alkali metal has a strong influence on the frequency of the C–C stretching vibration.  相似文献   

8.
New Elpasolithes with CoIII: Cs2KCoF6, Rb2KCoF6, Rb2NaCoF6 (with a Notice on Cs2NaCoF6) New prepared are the compounds Cs2KCoF6 (a = 8.979 Å), Rb2KCoF6 (a = 8.809 Å), Rb2NaCoF6 (a = 8.421 Å), all cubic Elpasolithes, as well as Cs2NaCoF6 (Cs2NaCrF6?type, hexagonal with a = 6.23, c = 30.32 Å) all of light blue colour. Cs2KCoF6 (72.7–299.7 K) and Rb2KCoF6 (71.4–298.0 K) have been measured magnetically. The Madelung Part of Lattice Energy (MAPLE) is calculated and discussed.  相似文献   

9.
Conclusions The solubility of rubidium and cesium sulfates in aqueous solutions of sulfuric acid was studied at 25°. Rubidium sulfate forms the compounds 3Rb2SO4· H2SO4, Rb2SO4 · H2SO4, Rb2SO4·3H2SO4 and Rb2SO4·7H2SO4 with sulfuric acid, while cesium sulfate forms the compounds Cs2SO4·H2SO4; Cs2SO4·3H2SO4 and Cs2SO4 · 7H2SO4.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 6, pp. 1166–1170, June, 1968.  相似文献   

10.
Vibrational Spectra of Solid, Liquid, and Soluted Metal Polysulphides. II Polysulphides Rb2Sn (n ? 4) and Na2S4 All compounds have been prepared from the elements in liquid ammonia. Whereas Rb2S4 has no defined composition, the vibrational spectra of Cs2S4 and their structure similar to Na2S4 indicate that Cs2S4 is a well-defined compound in contrast to former suggestions. Rb2S5 and Cs2S6 are the members with the greatest chainlength of their homologe series. While Na2S4 still exists of S42? chains in the melt the other polysulhpides disproportionate to S3? radicals and probably monosulphide. In the melt of Cs2S6, quenched to room temperature, a double branched chain structure, the thio-analogue of dithionite, S2S42?, is suggested. All polysulphides have a mean valence frequency, which is independent of the cation and decreases with increasing chainlength.  相似文献   

11.
The 13C NMR. spectra of nonaction have been recorded at 22.6 MHz. Additivityrules, chemical shift reagents and spectra of model compounds enabled a full assignment of the lines to be made. A comparison of the spectra of the nonactin complexes with Na+, K+, Rb+, Cs+, NH4+ and Ba2+ showed that no H-bridges between NH4+ and the nonactin carbonyls exist. This is corroborated by the infrared spectra of the complexes.  相似文献   

12.
The Crystal Structure of Cs2S and a Remark about Cs2Se, Cs2Te, Rb2Se, and Rb2Te Cs2S crystallizes orthorhombic, a = 8.571, b = 5.383, c = 10.39 Å, Z = 4, d = 4.13, dpyk = 4.19 g · cm?3, D–Pnma with \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {{\rm Cs}}\limits^|,\mathop {{\rm Cs}}\limits^\parallel $\end{document} and S in 4(c) each, for parameter see text. It is R = 10,4% for 202 of 222 possible reflexes. There is a sequence of S2? corresponding to the hexagonal closest packing of sphares. Cs occupies half of “tetrahedron” and all “octahedron vacancies”; the deviation of \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {{\rm Cs}}\limits^|, $\end{document} in ?oktahedron vacancies”? is noticeable. Effective Coordination Numbers, ECoN, and the Madelung Part of Lattice Energy, MAPLE, are calculated and discussed.  相似文献   

13.
High-pressure Synthesis and Structure of Rb2PtH6 and Cs2PtH6, Ternary Hydrides with K2PtCl6-Structure The ternary platinum hydrides Rb2PtH6 and Cs2PtH6 were synthesized by the reaction of rubidium hydride and cesium hydride, respectively, with platinum sponge under a hydrogen pressure above 1 500 bar at 500°C. X-ray investigations on powdered samples and elastic neutron diffraction experiments on the deuterated compounds at the time-of-flight spectrometer POLARIS led to their complete structure determination. Their atomic arrangements are isotypic with that of K2PtCl6 containing isolated [PtH6]2?-octahedra (space group: Fm3 m, Z = 4).  相似文献   

14.
Crystal Structure of Cs2PrO3 and also about Cs2CeO3, Cs2TbO3, Rb2CeO3, and Rb2TbO3 New prepared Cs2PrO3 (dark brown) is orthorhombic due to single crystal data, K2PbO3 type of structure (Cmc21) with a = 11.47, b = 7.722, c = 6.427 Å and Z = (4). Cs2CeO3 (colourless, a = 11.495, b = 7.753, c = 6.437 Å), Cs2TbO3 (red-brown, a = 11.37, b = 7.726, c = 6.142 Å), and the low-temperature form of (LT-) Rb2TbO3 (red-brown, a = 10.91, b = 7.390, c = 6.099 Å) are isotypic. Hitherto unknown HT-Rb2CeO3 (high-temperature form, colourless, a = 3.837, c = 18.47 Å, Z = 2, hexagonal) and “HT-Rb2TbO3” (red-brown, a = 3.773, c = 18.00 Å) correspond according to powder-data to the α-NaFeO2 type of structure. Cs2PrO3 has been measured magnetically (100–300 K). The Madelung Part of Lattice Energy (MAPLE) is calculated and discussed.  相似文献   

15.
Herein we report the colloidal synthesis of Cs3Sb2I9 and Rb3Sb2I9 perovskite nanocrystals, and explore their potential for optoelectronic applications. Different morphologies, such as nanoplatelets and nanorods of Cs3Sb2I9, and spherical Rb3Sb2I9 nanocrystals were prepared. All these samples show band‐edge emissions in the yellow–red region. Exciton many‐body interactions studied by femtosecond transient absorption spectroscopy of Cs3Sb2I9 nanorods reveals characteristic second‐derivative‐type spectral features, suggesting red‐shifted excitons by as much as 79 meV. A high absorption cross‐section of ca. 10−15 cm2 was estimated. The results suggest that colloidal Cs3Sb2I9 and Rb3Sb2I9 nanocrystals are potential candidates for optical and optoelectronic applications in the visible region, though a better control of defect chemistry is required for efficient applications.  相似文献   

16.
Two new compounds, namely cubic tricaesium lithium dizinc tetrakis(tetraoxotungstate), Cs3LiZn2(WO4)4, and tetragonal trirubidium dilithium gallium tetrakis(tetraoxomolybdate), Rb3Li2Ga(MoO4)4, belong to the structural family of Cs6Zn5(MoO4)8 (space group I 3d , Z = 4), with a partially incomplete (Zn5/61/6) position. In Cs3LiZn2(WO4)4, this position is fully statistically occupied by (Zn2/3Li1/3), and in Rb3Li2Ga(MoO4)4, the 2Li + Ga atoms are completely ordered in two distinct sites of the space group I 2d (Z = 4). In the same way, the crystallographically equivalent A + cations (A = Cs, Rb) in Cs6Zn5(MoO4)8, Cs3LiZn2(WO4)4 and isostructural A 3LiZn2(MoO4)4 and Cs3LiCo2(MoO4)4 are divided into two sites in Rb3Li2Ga(MoO4)4, as in other isostructural A 3Li2R (MoO4)4 compounds (AR = TlAl, RbAl, CsAl, CsGa, CsFe). In the title structures, the WO4 and (Zn,Li)O4 or LiO4, GaO4 and MoO4 tetrahedra share corners to form open three‐dimensional frameworks with the caesium or rubidium ions occupying cuboctahedral cavities. The tetrahedral frameworks are related to that of mayenite 12CaO·7Al2O3 and isotypic compounds. Comparison of isostructural Cs3M Zn2(MoO4)4 (M = Li, Na, Ag) and Cs6Zn5(MoO4)8 shows a decrease of the cubic lattice parameter and an increase in thermal stability with the filling of the vacancies by Li+ in the Zn position of the Cs6Zn5(MoO4)8 structure, while filling of the cation vacancies by larger Na+ or Ag+ ions plays a destabilizing role. The series A 3Li2R (MoO4)4 shows second harmonic generation effects compatible with that of β′‐Gd2(MoO4)3 and may be considered as nonlinear optical materials with a modest nonlinearity.  相似文献   

17.
Photoemission measurements with He and Ne resonance lines and Al Kα radiation are reported on bulk samples of the alkali metals Rb, Cs, their suboxides Cs7O, Cs11O3 and (Cs11O3)Rb7. For comparison, the Hel spectrum of the “normal” oxide Cs2O is added. The occurrence of ionic clusters in a metallic matrix is typical for the suboxides. Binding energies, Auger transitions, and electron concentrations are discussed. The spectra of the suboxides show a narrow non-bonding oxygen 2p band at 2.7 eV. Different binding energies are found for Cs atoms in the clusters and for the atoms in the metallic regions of (Cs11O3)Cs10. The compound Cs11O3 consists of ionic [Cs11O3]5? clusters, which are bound by 5 free electrons in accordance with the chemical bond model.  相似文献   

18.
Zintl‐Compounds with Gold and Germanium: M3AuGe4 with M = K, Rb, Cs Black, brittle single crystals of M3AuGe4 with M = K, Rb, Cs were synthesized by reactions of alkali metal azides (MN3) with gold sponge and germanium powder at T = 1120 K. The structures of the compounds (space group Pmmn, Z = 2, K3AuGe4: a = 6.655(1)Å, b = 11.911(2)Å, c = 6.081(1)Å; Rb3AuGe4: a = 6.894(1)Å, b = 12.421(1)Å, c = 6.107(1)Å; Cs3AuGe4: a = 7.179(1)Å, b = 12.993(2)Å, c = 6.112(2)Å) were determined from X‐ray single‐crystal diffractometry data. The semiconducting compounds contain equation/tex2gif-stack-2.gif[AuGe4]‐chains with P4‐analogous Ge4‐tetrahedra which are connected by μ2‐bridging gold atoms in a distorted tetrahedral Ge‐coordination.  相似文献   

19.
Molar enthalpies of solid-solid and solid-liquid phase transitions of the LaBr3, K2LaBr5, Rb2LaBr5, Rb3LaBr6 and Cs3LaBr6 compounds were determined by differential scanning calorimetry. K2LaBr5 and Rb2LaBr5 exist at ambient temperature and melt congruently at 875 and 864 K, respectively, with corresponding enthalpies of 81.5 and 77.2 kJ mol-1. Rb3LaBr6 and Cs3LaBr6 are the only 3:1 compounds existing in the investigated systems. The first one forms from RbBr and Rb2LaBr5 at 700 K with an enthalpy of 44.0 kJ mol-1 and melts congruently at 940 K with an enthalpy of 46.7 kJ mol-1. The second one exists at room temperature, undergoes a solid-solid phase transition at 725 K with an enthalpy of 9.0 kJ mol-1 and melts congruently at 1013 K with an enthalpy of 57.6 kJ mol-1. Two other compounds existing in the CsBr-based systems (Cs2LaBr5 and CsLa2Br7) decompose peritectically at 765 and 828 K, respectively. The heat capacities of the above compounds in the solid as well as in the liquid phase were determined by differential scanning calorimetry. A special method - 'step method' developed by SETARAM was applied in these measurements. The heat capacity experimental data were fitted by a polynomial temperature dependence. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
ABX3-type halide perovskite nanocrystals (NCs) have been a hot topic recently due to their fascinating optoelectronic properties. It has been demonstrated that A-site ions have an impact on their photophysical and chemical properties, such as the optical band gap and chemical stability. The pursuit of halide perovskite materials with diverse A-site species would deepen the understanding of the structure–property relationship of the perovskite family. In this work we have attempted to synthesize rubidium-based perovskite NCs. We have discovered that the partial substitution of Rb+ by Cs+ help to stabilize the orthorhombic RbPbBr3 NCs at low temperature, which otherwise can only be obtained at high temperature. The inclusion of Cs+ into the RbPbBr3 lattice results in highly photoluminescent Rb1−xCsxPbBr3 NCs. With increasing amounts of Cs+, the band gaps of the Rb1−xCsxPbBr3 NCs decrease, leading to a redshift of the photoluminescence peak. Also, the Rb1−xCsxPbBr3 NCs (x=0.4) show good stability under ambient conditions. This work demonstrates the high structural flexibility and tunability of halide perovskite materials through an A-site cation substitution strategy and sheds light on the optimization of perovskite materials for application in high-performance optoelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号