首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of 2, 2′‐bipyridine‐6, 6′‐dicarboxylic acid (H2bpdc) with zinc nitrate and different rare earth chlorides generates two novel three‐dimensional supramolecules Zn(6‐bpc)2 · 2H2O ( 1 ) and Ce(bpdc)2 · H2O ( 2 ) (6‐Hbpc = 2, 2′‐bipyridine‐6‐carboxylic acid). The left‐and right‐handed helical chains give rise to a 3D supramolecular framework through hydrogen‐bond and weak π–π interactions in complex 1 . Interestingly, the decarboxylation occurred and the bpdc ligand was transformed into 6‐bpc species under the hydrothermal reaction in the presence of NdIII ions, while the decarboxylation did not occur when CeIII ions were used. In the structure of 2 , one central Ce(IV) atom coordinates to two bpdc ligands, resulting in a discrete molecule. These discrete units are further extended into a 3D supramolecular structure through intermolecular hydrogen bonds and π–π interactions.  相似文献   

2.
The new triplesalophen ligand H6kruseBr was synthesized as a variation of the triplesalophen ligands H6baronR by replacing a phenyl by a methyl group at the terminal ketimine in order to allow closer contacts of trinuclear complexes due to less steric hindrance by the smaller methyl group. The ligand H6kruseBr was used to synthesize the trinuclear complex [(kruseBr)NiII3], which is insoluble in organic solvents despite the coordinating solvent pyridine. Recrystallization from pyridine results in the complex [(kruseBr){Ni2(Ni(py)2)}], which was characterized by single‐crystal X‐ray diffraction. Two NiII ions are four‐coordinate by the salophen‐like subunits while the third NiII ion is six‐coordinate by two additional pyridine donors. The analysis of the molecular and crystal structure in comparison to that of NiII3 complexes of (baronR)6– reveals that the methyl group in [(kruseBr){Ni2(Ni(py)2)}] results in less ligand folding and in closer contact distance of two NiII3 complexes by ππ interactions of 3.2 Å. This indicates that trinuclear complexes of H6kruseBr are more suitable than complexes of H6baronR as molecular building blocks for the anticipated synthesis of nonanuclear single‐molecule magnets.  相似文献   

3.
In the lattice of the title compound (systematic name: 5,6,7‐trihydroxy‐4′‐meth­oxy­isoflavone monohydrate), C16H12O6·H2O, the isoflavone mol­ecules are linked into chains through R43(17) motifs composed via O—H⋯O and C—H⋯O hydrogen bonds. Centrosymmetric R42(14) motifs assemble the chains into sheets. Hydrogen‐bonding and aromatic π–π stacking inter­actions lead to the formation of a three‐dimensional network structure.  相似文献   

4.
5.
Nucleophilic attack of CN on bicyclo[3.2.1]octadienyl-, bicyclo[3.2.2]- nonadienyl-, and 6,7-benzobicyclo[3.2.2]nonadienyliron tricarbonyl tetrafluoroborates, results in mixed-type complexes containing both σ and π-allyl bonds. The cyano group in the products is located exo to the bicyclic ring.In contrast, the three cations react smoothly with I; carbon monoxide is displaced to give iron complexes containing covalently-bound halogen.  相似文献   

6.
Polycyclic aromatic hydrocarbons (PAHs), especially three branchphene benzocyclotrimers represent a series of molecules with intriguing physical and chemical properties. Benzocyclotrimers are also important precursors to construct fullerenes and graphenes. In this article, we review the recent progress in the preparation methods of π‐conjugated benzocyclotrimers. In particular, cyclotrimerization reactions to construct varying shaped and edged benzocyclotrimers are illustrated. Various typical characterization methods for these materials, such as variable‐temperature 1H‐NMR, single crystal X‐ray analysis, density functional theory (DFT) calculations and atomic force microscope (AFM) measurements are included for discussion.  相似文献   

7.
The synthesis and structural characterization of 2‐(furan‐2‐yl)‐1‐(furan‐2‐ylmethyl)‐1H‐benzimidazole [C16H12N2O2, (I)], 2‐(furan‐2‐yl)‐1‐(furan‐2‐ylmethyl)‐1H‐benzimidazol‐3‐ium chloride monohydrate [C16H13N2O2+·Cl·H2O, (II)] and the hydrobromide salt 5,6‐dimethyl‐2‐(furan‐2‐yl)‐1‐(furan‐2‐ylmethyl)‐1H‐benzimidazol‐3‐ium bromide [C18H17N2O2+·Br, (III)] are described. Benzimidazole (I) displays two sets of aromatic interactions, each of which involves pairs of molecules in a head‐to‐tail arrangement. The first, denoted set (Ia), exhibits both intermolecular C—H...π interactions between the 2‐(furan‐2‐yl) (abbreviated as Fn) and 1‐(furan‐2‐ylmethyl) (abbreviated as MeFn) substituents, and π–π interactions involving the Fn substituents between inversion‐center‐related molecules. The second, denoted set (Ib), involves π–π interactions involving both the benzene ring (Bz) and the imidazole ring (Im) of benzimidazole. Hydrated salt (II) exhibits N—H...OH2...Cl hydrogen bonding that results in chains of molecules parallel to the a axis. There is also a head‐to‐head aromatic stacking of the protonated benzimidazole cations in which the Bz and Im rings of one molecule interact with the Im and Fn rings of adjacent molecules in the chain. Salt (III) displays N—H...Br hydrogen bonding and π–π interactions involving inversion‐center‐related benzimidazole rings in a head‐to‐tail arrangement. In all of the π–π interactions observed, the interacting moieties are shifted with respect to each other along the major molecular axis. Basis set superposition energy‐corrected (counterpoise method) interaction energies were calculated for each interaction [DFT, M06‐2X/6‐31+G(d)] employing atomic coordinates obtained in the crystallographic analyses for heavy atoms and optimized H‐atom coordinates. The calculated interaction energies are −43.0, −39.8, −48.5, and −55.0 kJ mol−1 for (Ia), (Ib), (II), and (III), respectively. For (Ia), the analysis was used to partition the interaction energies into the C—H...π and π–π components, which are 9.4 and 24.1 kJ mol−1, respectively. Energy‐minimized structures were used to determine the optimal interplanar spacing, the slip distance along the major molecular axis, and the slip distance along the minor molecular axis for 2‐(furan‐2‐yl)‐1H‐benzimidazole.  相似文献   

8.
The cation of the title complex salt, chlorido{2,2‐dimethyl‐N‐[(E)‐1‐(pyridin‐2‐yl)ethylidene]propane‐1,3‐diamine}platinum(II) tetrafluoridoborate, [PtCl(C12H19N3)]BF4, exhibits a nominally square‐planar PtII ion coordinated to a chloride ion [Pt—Cl = 2.3046 (9) Å] and three unique N‐atom types, viz. pyridine, imine and amine, of the tridentate Schiff base ligand formed by the 1:1 condensation of 1‐(pyridin‐2‐yl)ethanone and 2,2‐dimethylpropane‐1,3‐diamine. The cations are π‐stacked in inversion‐related pairs (dimers), with a mean plane separation of 3.426 Å, an intradimer Pt...Pt separation of 5.0785 (6) Å and a lateral shift of 3.676 Å. The centroid (Cg) of the pyridine ring is positioned approximately over the PtII ion of the neighbouring cation (Pt...Cg = 3.503 Å).  相似文献   

9.
The interaction of some neutral acids of π type, bearing appropriate unsymmetrical substitutions at the C?C group with some selected bases (H2O, NH3, OH?), is compared with that of the parent compound of a new set of neutral π acids, bearing symmetrical substitutions at the C?C group with the same bases. The analyses of the interaction energy, performed according to two decomposition schemes, with and without the counterpoise corrections, make clear the similarity of symmetrically and unsymmetrically substituted neutral organic acids.  相似文献   

10.
The interaction between a noble gas atom and an aromatic π‐electron system, which mainly originates from the London dispersion force, is very weak and has not attracted enough attention yet. Herein, we reported a type of notably enhanced aerogen–π interaction between cation–π systems and noble gas atoms. The binding strength of a divalent cation–π system with a xenon atom is comparable to a moderate hydrogen bond (up to ca. 7 kcal mol?1), whereas krypton and argon atoms produce slightly weaker interactions. Energy‐decomposition analysis reveals that the induction interaction is responsible for the stabilization of divalent cation–π?Xe species besides the dispersion interaction. Our results might be helpful to increase the understanding of some unsolved mysteries of aerogens.  相似文献   

11.
A 1,4-cyclohexadiene dianion resonance structure makes a significant contribution to the structure of the (arene)Ti complex [LTi(η6-PhCH3)] (see picture on the right). Labeling experiments have demonstrated that the structure forms through an unusual elimination/σ–π rearrangement reaction in which [LTi(CH2Ph)2] reacts readily with hydrogen; the use of the cyclohexane-linked bis-amidinate ligand L with constrained geometry makes the transformation possible.  相似文献   

12.
The molecules of 4‐allyloxy‐7‐chloroquinoline, C12H10ClNO, (I), 7‐chloro‐4‐methoxyquinoline, C10H8ClNO, (II), and 7‐chloro‐4‐ethoxyquinoline, C11H10ClNO, (III), are all planar. In all three structures, π–π interactions between the quinoline ring systems are generated by unit‐cell translations along the a axes, irrespective of space group. These structures are the first reported for 4‐alkoxyquinolines.  相似文献   

13.
The photoelectron spectrum (PE. spectrum) of barrelene (bicyclo[2.2.2]octatriene, 4 ) is recorded and the first four bands are correlated with orbitals obtained with the MINDO/2-SCF procedure. The structural changes accompagnying the ionisation process 4 → 4 + are qualitatively derived from the features of the top-occupied a′2 (π) MO of 4 , which shows complete σ-π separation. The vibrational pattern of the corresponding PE. band 1. as well as complete energy-minimisation of the geometries of 4 and 4 + support the conclusion that 4 is a rather strained molecule. The interaction of the three π? bonds in 4 are discussed in terms of ‘through-space’ and ‘through-bond’ interaction with lower lying σ-orbitals. It is found that the latter is far from being negligible.  相似文献   

14.
The structure of 1‐benzofuran‐2,3‐dicarboxylic acid (BFDC), C10H6O5, (I), exhibits an intramolecular hydrogen bond between one –COOH group and the other, while the second carboxyl function is involved in intermolecular hydrogen bonding to neighbouring species. The latter results in the formation of flat one‐dimensional hydrogen‐bonded chains in the crystal structure, which are π–π stacked along the normal to the plane of the molecular framework, forming a layered structure. 1:1 Cocrystallization of BFDC with pyridine, phenazine and 1,4‐phenylenediamine is associated with H‐atom transfer from BFDC to the base and charge‐assisted hydrogen bonding between the BFDC monoanion and the corresponding ammonium species, while preserving, in all cases, the intramolecular hydrogen bond between the carboxyl and carboxylate functions. The pyridinium 2‐carboxylato‐1‐benzofuran‐3‐carboxylic acid, C5H6N+·C10H5O5, (II), and phenazinium 3‐carboxylato‐1‐benzofuran‐2‐carboxylic acid, C12H9N2+·C10H5O5, (III), adducts form discrete hydrogen‐bonded ion‐pair entities. In the corresponding crystal structures, the two components are arranged in either segregated or mixed π–π stacks, respectively. On the other hand, the structure of 4‐aminoanilinium 2‐carboxylato‐1‐benzofuran‐3‐carboxylic acid, C6H9N2+·C10H5O5, (IV), exhibits an intermolecular hydrogen‐bonding network with three‐dimensional connectivity. Moreover, this fourth structure exhibits induction of supramolecular chirality by the extended hydrogen bonding, leading to a helical arrangement of the interacting moieties around 21 screw axes. The significance of this study is that it presents the first crystallographic characterization of pure BFDC, and manifestation of its cocrystallization with a variety of weakly basic amine molecules. It confirms the tendency of BFDC to preserve its intramolecular hydrogen bond and to prefer a monoanionic form in supramolecular association with other components. The aromaticity of the flat benzofuran residue plays an important role in directing either homo‐ or heteromolecular π–π stacking in the first three structures, while the occurrence of a chiral architecture directed by multiple hydrogen bonding is the dominant feature in the fourth.  相似文献   

15.
A [2.2]paracyclophane‐based through‐space conjugated oligomer comprising three π‐electron systems was designed and synthesized. The arrangement of three π‐conjugated systems in an appropriate order according to the energy band gap resulted in efficient unidirectional photoexcited energy transfer by the Förster mechanism. The energy transfer efficiency and rate constants were estimated to be >0.999 and >1012 s?1, respectively. The key point for the efficient energy transfer is the orientation of the transition dipole moments. The time‐dependent density functional theory (TD‐DFT) studies revealed the transition dipole moments of each stacked π‐electron system; each dipole moment was located on the long axis of each stacked π‐electron system. This alignment of the dipole moments is favorable for fluorescence resonance energy transfer (FRET).  相似文献   

16.
The ESR spectra of the radical anions of several trimethylsilyl substituted polyenes, benzenes and naphthalenes have been recorded; most of them are surprisingly stable under the conditions of measurement. Accurate values could be obtained for the splitting parameters – not only of the protons, but also of the 29Si isotopes in natural abundance. The coupling constants of the 29Si nuclei in trimethylsilyl substituents are of the same order of magnitude as the corresponding values of the protons attached to centers of comparable π-spin population. The results indicate some Si ← Cπ delocalization.  相似文献   

17.
A series of organosilicon polymers containing polysilane and diethynylaryl units along the polymer backbone were synthesized and examined with respect to their optical absorptions. The results indicate that delocalization takes place through the σ–π conjugated system. Lengthening of π-conjugation leads to lower excitation energies while nearly identical UV–vis spectra are observed with increased Si–Si chain length. Introducing a thiophene unit into the π-system instead of a benzene unit leads to a bathochromic shift reflecting greater σ–π delocalization. The polymers undergo photodegradation, probably via cleavage of the Si–Si bonds, and thermal crosslinking by reaction at the C≡C triple bonds. When doped with iodine, these polymers become semiconducting with conductivity of the order of 10?4 S cm?1.  相似文献   

18.
Non‐covalent interactions play a crucial role in (supramolecular) chemistry and much of biology. Supramolecular forces can indeed determine the structure and function of a host–guest system. Many sensors, for example, rely on reversible bonding with the analyte. Natural machineries also often have a significant non‐covalent component (e.g. protein folding, recognition) and rational interference in such ‘living’ devices can have pharmacological implications. For the rational design/tweaking of supramolecular systems it is helpful to know what supramolecular synthons are available and to understand the forces that make these synthons stick to one another. In this review we focus on σ‐hole and π‐hole interactions. A σ‐ or π‐hole can be seen as positive electrostatic potential on unpopulated σ* or π(*) orbitals, which are thus capable of interacting with some electron dense region. A σ‐hole is typically located along the vector of a covalent bond such as X?H or X?Hlg (X=any atom, Hlg=halogen), which are respectively known as hydrogen and halogen bond donors. Only recently it has become clear that σ‐holes can also be found along a covalent bond with chalcogen (X?Ch), pnictogen (X?Pn) and tetrel (X?Tr) atoms. Interactions with these synthons are named chalcogen, pnigtogen and tetrel interactions. A π‐hole is typically located perpendicular to the molecular framework of diatomic π‐systems such as carbonyls, or conjugated π‐systems such as hexafluorobenzene. Anion–π and lone‐pair–π interactions are examples of named π‐hole interactions between conjugated π‐systems and anions or lone‐pair electrons respectively. While the above nomenclature indicates the distinct chemical identity of the supramolecular synthon acting as Lewis acid, it is worth stressing that the underlying physics is very similar. This implies that interactions that are now not so well‐established might turn out to be equally useful as conventional hydrogen and halogen bonds. In summary, we describe the physical nature of σ‐ and π‐hole interactions, present a selection of inquiries that utilise σ‐ and π‐holes, and give an overview of analyses of structural databases (CSD/PDB) that demonstrate how prevalent these interactions already are in solid‐state structures.  相似文献   

19.
The complex poly[[aqua(μ2‐phthalato‐κ2O1:O2){μ3‐2‐[3‐(pyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]acetato‐κ4N2,N3:O:O′}{μ2‐2‐[3‐(pyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]acetato‐κ3N2,N3:O}dizinc(II)] dihydrate], {[Zn2(C10H8N3O2)2(C8H4O4)(H2O)]·2H2O}n, has been prepared by solvothermal reaction of 2‐[3‐(pyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]acetonitrile (PPAN) with zinc(II). Under hydrothermal conditions, PPAN is hydrolyzed to 2‐[3‐(pyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]acetate (PPAA). The structure determination reveals that the complex is a one‐dimensional double chain containing cationic [Zn4(PPAA)4]4+ structural units, which are further extended by bridging phthalate ligands. The one‐dimensional chains are extended into a three‐dimensional supramolecular architecture via hydrogen‐bonding and π–π stacking interactions.  相似文献   

20.
[μ‐N,N′‐Bis(pyridin‐3‐yl)benzene‐1,4‐dicarboxamide‐<!?show [forcelb]><!?tlsb=0.12pt>1:2κ2N:N′]bis{[N,N′‐bis(pyridin‐3‐yl)benzene‐1,4‐dicarboxamide‐κN]diiodidomercury(II)}, [Hg2I4(C18H14N4O2)3], is an S‐shaped dinuclear molecule, composed of two HgI2 units and three N,N′‐bis(pyridin‐3‐yl)benzene‐1,4‐dicarboxamide (L) ligands. The central L ligand is centrosymmetric and coordinated to two HgII cations via two pyridine N atoms, in a synsyn conformation. The two terminal L ligands are monodentate, with one uncoordinated pyridine N atom, and each adopts a synanti conformation. The HgI2 units show highly distorted tetrahedral (sawhorse) geometry, as the HgII centres lie only 0.34 (2) or 0.32 (2) Å from the planes defined by the I and pyridine N atoms. Supramolecular interactions, thermal stability and solid‐state luminescence properties were also measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号