首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[VCl3(NPPh3)(OPPh3)], a Phosphorane Iminato Complex of Vanadium(IV) The title compound has been prepared from vanadium tetrachloride and Me3SiNPPh3 in the presence of OPPh3 in CCl4 solution, forming orange-red, moisture sensitive crystals, which were characterized by an X-ray structure determination. Space group Cc, Z = 4, 2 560 observed unique reflections, R = 0.049. Lattice dimensions at 0°C: a = 1 018(1), b = 1 826(2), c = 1 859(2) pm, β = 93.65(9)° [VCl3(NPPh3)(OPPh3)] forms monomeric molecules, in which the vanadium atom is coordinated in a distorted square pyramidal fashion with the (NPPh3)? ligand in apical position. The three chlorine atoms and the oxygen atom of the OPPh3 molecule occupy the basal positions. The phosphorane iminato group V?N?PPh3 is nearly linear (bond angle VNP 161.4°), the bond lengths VN (169 pm) and PN (162 pm) correspond with double bonds.  相似文献   

2.
Reaction of Rhenium Trichloride Dinitrosyl with Triphenyl Phosphane. Crystal Structure of [ReCl3(NO) (NPPh3) (OPPh3)] Triphenyl phosphane reacts with ReCl3(NO)2 in dichloro methane solution forming the phosphaneiminato complex [ReCl3(NO)(NPPh3)(OPPh3)], which is characterized by it's i.r. spectrum and by 31P nuclear magnetic resonance. The crystal structure was determined by the aid of X-ray diffraction data (3 133 independent reflexions, R = 3.9%). The complex crystallizes monoclinic in the space group P21/n with four formula units per unit cell. The lattice dimensions are a = 1114, b = 1825, c = 1931 pm, β 96.6°. In the complex the rhenium atom has the coordination number six, the ligands being three chlorine atoms, the linear bonded Nitrosyl group, the O atom of the triphenyl phosphane oxide, which is coordinated trans to the NO ligand, and the N atom of the phosphaneiminato group. The ReN and PN bond lengths of the (NPPh3)? ligand (186 and 163 pm, resp.) indicate double bond character; in contrast to other phosphaneiminato complexes of transition metals with linear array M?N?P, in [ReCl3(NO)(NPPh3)(OPPh3)] the Re? N? P bond angle is only 139°.  相似文献   

3.
Oxorhenium(V) complexes [ReOX3(PPh3)2] (X = Cl, Br) react with phenylacetylene under formation of complexes with ylide‐type ligands. Compounds of the compositions [ReOCl3(PPh3){C(Ph)C(H)(PPh3)}] ( 1 ), [ReOBr3(OPPh3){C(Ph)C(H)(PPh3)}] ( 2 ), and [ReOBr3(OPPh3){C(H)C(Ph)(PPh3)}] ( 3 ) were isolated and characterized by X‐ray diffraction. They contain a ligand, which was formed by a nucleophilic attack of released PPh3 at coordinated phenylacetylene. The structures of the products show that there is no preferable position for this attack. Cleavage of the Re–C bond in 3 and dimerization of the organic ligand resulted in the formation of the [{(PPh3)(H)CC(Ph)}2]2+ cation, which crystallized as its [(ReOBr4)(OReO3)]2– salt.  相似文献   

4.
Synthesis of Phenylnitrene Complexes with N-Trimethylsilylaniline. II. Characterization and Crystal Structure of the Rhenium(V) Complexes mer-[Re(NPh)Cl3(NH2Ph)(Ph3P)] and trans-[Re(NPh)(OMe)Cl2(Ph3P)2] Reaction of [ReOCl3(Ph3P)2] with N-trimethylsilylaniline yields mer-[Re(NPh)Cl3(Ph3P)2], which reacts under air with excess of N-trimethylsilylaniline to form [Re(NPh)Cl3 · (NH2Ph)(Ph3P)]. Crystallization from CH2Cl2/MeOH affords [Re(NPh)(OMe)Cl2(Ph3P)2] as an additional product. [Re(NPh)Cl3(NH2Ph)(Ph3P)] crystallizes in the monoclinic space group P21/n with a = 1 192.3(3); b = 1 918.9(3); c = 1 266.3(3) pm; β = 101.71(1)°; Z = 4. The rhenium atom has a distorted octahedral environment with the Cl atoms in meridional positions. The phenyl nitrene ligand is coordinated with an almost linear arrangement Re? N1? C40 = 166.8(6)° and with a bond distance Re?N = 170.5(6) pm. [Re(NPh)(OMe)Cl2(Ph3P)2] · 1/2CH2Cl2 crystallizes in the triclinic space group P1 : a = 1 103.1(4); b = 1 227.9(4); c = 1 711.3(5) pm; α = 70.48(3)°; β = 72.71(3)°; γ = 80.03(3)°; Z = 2. The rhenium atom exhibits a distorted octahedral coordination with the Cl atoms and the phosphine ligands in trans positions. As a consequence of the competition of the nitrene ligand and the trans-coordinated methoxy group the Re?;N bond length is slightly lengthened to 173.2(7) pm, while the Re? O bond length of 193.4(6) pm is short. The bond angles Re? N? C70 and Re? O? C80 are 173.3(7)° and 139.1(7)°, respectively.  相似文献   

5.
Synthesis, Crystal Structure, and Properties of the Complexes [(H2O)Cl4Os≡N‐IrCl(C5Me5)(AsPh3)], [(Ph3Sb)Cl4Os≡N‐IrCl(C5Me5)(SbPh3)], [(Ph3Sb)2Cl3Os≡N‐IrCl(COD)] and [{(Me2PhP)2(CO)Cl2Re≡N}2ReNCl2(PMe2Ph)] The dinuclear complexes [(H2O)Cl4Os≡N‐IrCl(C5Me5)(AsPh3)]·H2O ( 1 ·H2O), [(Ph3Sb)Cl4Os≡N‐IrCl(C5Me5)(SbPh3)] ( 2 ), and [(Ph3Sb)2Cl3Os≡N‐IrCl(COD)] ( 3 ) result from the reaction of the nitrido complexes [(Ph3As)2OsNCl3] and [(Ph3Sb)2OsNCl3] with the iridium compounds [IrCl2(C5Me5)]2 and [IrCl(COD)]2 in dichloromethane. 1 crystallizes as 1 ·H2O in form of green platelets in the monoclinic space group Cm and a = 1105.53(6); b = 1486.76(9); c = 2024.88(10) pm, β = 97.191(4)°, Z = 4. The formation of 1 in air involves a ligand exchange, and the coordination of a water molecule in trans position to the Os‐N triple bond. The resulting complex fragments [(H2O)Cl4Os≡N] and [IrCl(C5Me5)(AsPh3)] are connected by an asymmetric nitrido bridge Os≡N‐Ir. The nitrido bridge is characterised by an Os‐N‐Ir bond angle of 173.7(7)°, and distances Os‐N = 168(1) pm and Ir‐N = 191(1) pm. 2 crystallizes in clumped together brown platelets with the space group and a = 1023.3(3), b = 1476.2(3), c = 1872.5(6) pm, α = 74.60(2), β = 73.84(2), γ = 76.19(2)°, Z = 2. In 2 the asymmetric nitrido bridge Os≡N‐Ir joins the two complex fragments [(Ph3Sb)Cl4Os≡N] and [IrCl(C5Me5)(SbPh3)], which are formed by a ligand exchange reaction. 3 forms dark green crystals with the triclinic space group and a = 1079.4(1), b = 1172.3(1), c = 1696.7(2) pm, α = 101.192(9),β = 92.70(1), γ = 92.61(1)°, Z = 2. The distances in the almost linear nitrido bridge (Os≡N‐Ir = 175.3(7)°) are Os‐N = 171(1) pm and Ir‐N = 183(1) pm. The reaction of [ReNCl2(PMe2Ph)3] with [Mo(CO)3(NCMe)3] unexpectedly affords the trinuclear complex [{(Me2PhP)2(OC)Cl2Re≡N}2ReNCl2(PMe2Ph)] ( 4 ) as the main product. It forms triclinic brown crystals with the composition 4 ·2THF and the space group (a = 1382.70(7), b = 1498.58(7), c = 1760.4(1) pm, α = 99.780(7), β = 99.920(7), γ = 114.064(6)°, Z = 2). In the trinuclear complex, the central fragment, [ReNCl2(PMe2Ph)] is joined in trans position to two nitrido complexes [(Me2PhP)2(CO)Cl2Re≡N], giving an almost linear Re≡N‐Re‐N≡Re arrangement. The bond angles and distances in the nitrido bridges are Re‐N‐Re = 167.8(3)°, Re‐N = 171.1(8) pm and 204.2(8) pm; and Re‐N‐Re = 168.1(4)°, Re‐N = 170.9(9) and 203.5(9) pm respectively. As expected, the Re‐N bond length to the terminal nitrido ligand on the central Re atom is much shorter at 161.2(9) pm than the triple bonds of the asymmetric bridges.  相似文献   

6.
Reactions of the oxorhenium(V) complexes [ReOX3(PPh3)2] (X = Cl, Br) with the N‐heterocyclic carbene (NHC) 1,3,4‐triphenyl‐1,2,4‐triazol‐5‐ylidene (LPh) under mild conditions and in the presence of MeOH or water give [ReOX2(Y)(PPh3)(LPh)] complexes (X = Cl, Br; Y = OMe, OH). Attempted reactions of the carbene precursor 5‐methoxy‐1,3,4‐triphenyl‐4,5‐dihydro‐1H‐1,2,4‐triazole ( 1 ) with [ReOCl3(PPh3)2] or [NBu4][ReOCl4] in boiling xylene resulted in protonation of the intermediately formed carbene and decomposition products such as [HLPh][ReOCl4(OPPh3)], [HLPh][ReOCl4(OH2)] or [HLPh][ReO4] were isolated. The neutral [ReOX2(Y)(PPh3)(HLPh)] complexes are purple, airstable solids. The bulky NHC ligands coordinate monodentate and in cis‐position to PPh3. The relatively long Re–C bond lengths of approximate 2.1Å indicate metal‐carbon single bonds.  相似文献   

7.
(PPh4)[(ReO2S2)CuI] and (NEt4)2[ReOS3)Cu3Cl4]: Fixation of the up to now not Isolated Ions [ReO2S2]? and [ReOS3]? Utilizing the Stability of the CuS2(Re) and Cu3S3(Re) Fragments (PPh4)[(ReO2S2)CuI] ( 1 ) and (NEt4)2[ReOS3)Cu3Cl4] ( 2 ) containing the up to now not isolated oxothioperrhenate ions [ReO2S2]? and [ReOS3]? as ligands, have been prepared by the reaction of (NEt4)[ReS4] with PPh3 and CuI in acetone in the presence of (PPh4)I (( 1 )) or with CuCl in CH2Cl2 in the presence of (NEt4)Cl (( 2 )), respectively. 1 and 2 have been characterized by X-ray structure analysis, elemental analysis and spectroscopic studies (IR, UV/Vis). The electronic spectra show bands which can approximately be assigned to interesting low-energy charge-transfer-transitions of the type d(Cu) → d(Re). For crystal data see Inhaltsübersicht.  相似文献   

8.
Mixed-ligand Complexes of Rhenium. IX. Reactions on the Nitrido Ligand of [ReN(Me2PhP)(Et2dtc)2]. Synthesis, Characterization, and Structures of [Re(NBCl3)(Me2PhP)(Et2dtc)2], [Re(NGaCl3)(Me2PhP)(Et2dtc)2], and [Re(NS)Cl(Me2PhP)2(Et2dtc)] BCl3, GaCl3 and S2Cl2 react with the well-known [ReN(Me2PhP)(Et2dtc)2] by attack of the nucleophilic nitrido ligand. Final products of these reactions are [Re(NBCl3)-(Me2PhP)(Et2dtc)2], [Re(NGaCl3)(Me2PhP)(Et2dtc)2], and [Re(NS)Cl(Me2PhP)2Et2dtc)] which have been studied by mass spectrometry, IR spectroscopy and X-ray diffraction. [Re(NBCl3)(Me2PhP)(Et2dtc)2] crystallizes in the triclinic space group P1 , Z = 2, a = 8.151(6), b = 9.935(8), c = 18.67(1) Å; α = 94.42(4), β = 97.09(1), γ = 101.35(4)°. The coordination geometry is a distorted octahedron. The equatorial coordination sphere is occupied by one phosphorus and three sulphur atoms. The fourth sulphur atom is in trans position to the Re?N? B moiety. The almost linear Re?N? B unit has an Re?N? B angle of 170.5(3)° with a Re? N bond length of 1.704(3) Å. The analogous [Re(NGaCl3)(Me2PhP)(Et2dtc)2] crystallizes in P21/c with a = 8.138(3), b = 18.279(2), c = 19.880(6) Å; β = 99.81(2)°; Z = 4. Rhenium has a distorted octahedral environment. The Re? N? Ga bond is slightly bent with an angle of 154.5(4)° and a Re? N bond length of 1.695(6) Å. [Re(NS)Cl(Me2PhP)2(Et2dtc)] crystallizes in the triclinic space group P1 , Z = 4, a = 9.514(2); b = 16.266(5); c = 18.388(3) Å; α = 88.75(2), β = 76.59(2), γ = 85.50(2)° with two crystallographically independent molecules in the asymmetric unit. Rhenium has a distorted octahedral environment with the chloro ligand in trans position to the almost linear thionitrosyl group. The Re?N bond lengths are 1.795(6) and 1.72(1) Å, respectively, and the N?S distances are 1.55(1) and 1.59(1) Å, respectively.  相似文献   

9.
[Fe2sb‐CO)(CO)3(NO)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)]: Synthesis, X‐ray Crystal Structure and Isomerization Na[Fe2(μ‐CO)(CO)6(μ‐PtBu2)] ( 1 ) reacts with [NO][BF4] at —60 °C in THF to the nitrosyl complex [Fe2(CO)6(NO)(μ‐PtBu2)] ( 2 ). The subsequent reaction of 2 with phosphanes (L) under mild conditions affords the complexes [Fe2(CO)5(NO)L(μ‐PtBu2)], L = PPh3, ( 3a ); η‐dppm (dppm = Ph2PCH2PPh2), ( 3b ). In this case the phosphane substitutes one carbonyl ligand at the iron tetracarbonyl fragment in 2 , which was confirmed by the X‐ray crystal structure analysis of 3a . In solution 3b loses one CO ligand very easily to give dppm as bridging ligand on the Fe‐Fe bond. The thus formed compound [Fe2(CO)4(NO)(μ‐PtBu2)(μ‐dppm)] ( 4 ) occurs in solution in different solvents and over a wide temperature range as a mixture of the two isomers [Fe2sb‐CO)(CO)3(NO)(μ‐PtBu2)(μ‐dppm)] ( 4a ) and [Fe2(CO)4(μ‐NO)(μ‐PtBu2)(μ‐dppm)] ( 4b ). 4a was unambiguously characterized by single‐crystal X‐ray structure analysis while 4b was confirmed both by NMR investigations in solution as well as by means of DFT calculations. Furthermore, the spontaneous reaction of [Fe2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 5 ) with NO at —60 °C in toluene yields a complicated mixture of products containing [Fe2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 6 ) as main product beside the isomers 4a and 4b occuring in very low yields.  相似文献   

10.
Abstract

The reaction of [MoCl(GeCl3)(CO)3(NCMe)2] with an equimolar quantity of L?L {L?L = 2,2′-bipy, 1,10-phen, Ph2P(CH2)nPPh2 (n = 1 or 2)} in CH2Cl2 at room temperature gave either [MoCl(GeCl3)(CO)3(L?L)] (L?L = 2,2′-bipy or 1,10-phen) (1 and 2) or [MoCl(GeCl3)(CO)2 (NCMe)(L?L)]{L?L = Ph2P(CH2)nPPh2 (n = 1 or 2) (3 or 4), respectively. Equimolar quantities of [MoCl(GeCl3)(CO)2(NCMe){Ph2P(CH2)PPh2}] (3) and L?L {L?L = 2,2′-bipy or Ph2P(CH)2PPh2} react in CH2Cl2 at room temperature to afford the cationic complexes [Mo(GeCl3)(CO)2{Ph2P(CH2) PPh2}(L?L)]Cl (5 and 6) in good yield. The cationic nature of 6 was established by chloride exchange by reacting Na[BPh4] with 6 in acetonitrile to give the tetraphenylborate complex [Mo(GeCl3)(CO)2{Ph2P(CH2)PPh2}2][BPh4] (7). Reaction of equimolar quantities of [MoCl(GeCl3) (CO)3(NCMe)2] and PhP(CH2CH2PPh2)2 in CH2Cl2 at room temperature afforded the dicarbonyl complex [MoCl(GeCl3)(CO)2{PhP(CH2CH2PPh2)2}] (8) in good yield.  相似文献   

11.
Coordinatively Unsaturated Diruthenium Complexes: Synthesis and X‐Ray Crystal Structures of [Ru2(CO)4(μ‐H)(μ‐S)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)], [Ru2(CO)4(μ‐X)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] (X = Cl, S2CH) [Ru2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 1 ) reacts in benzene with elemental sulfur to the addition product [Ru2(CO)4(μ‐H)(μ‐S)(μ‐PtBu2)(μ‐dppm)] ( 2 ) (dppm = Ph2PCH2PPh2). 2 is also obtained by reaction of 1 with ethylene sulfide. The reaction of 1 with carbon disulfide yields with insertion of the CS2 into the Ru2(μ‐H) bridge the dithioformato complex [Ru2(CO)4(μ‐S2CH)(μ‐PtBu2)(μ‐dppm)] ( 3 ). Furthermore, 1 reacts with [NO][BF4] to the complex salt [Ru2(CO)4(μ‐NO)(μ‐H)(μ‐PtBu2)(μ‐dppm)][BF4] ( 4 ), and reaction of 1 with CCl4 or CHCl3 affords spontaneously [Ru2(CO)4(μ‐Cl)(μ‐PtBu2)(μ‐dppm)] ( 5 ) in nearly quantitative yield. The molecular structures of 2 , 3 and 5 were confirmed by crystal structure analyses.  相似文献   

12.
The reaction of [ReOCl3(PPh3)2] with 5,6-diphenyl-3-(2-pyridyl)-1,2,4-trazine (dppt) has been examined and [ReCl3(OPPh3)(dppt)] has been obtained. The triphenylphosphine oxide can be easily replaced by PPh3 in the reaction of [ReCl3(OPPh3)(dppt)] with an excess of triphenylphosphine. The [ReCl3(OPPh3)(dppt)] and [ReCl3(PPh3)(dppt)] complexes have been structurally and spectroscopically characterized. Their molecular orbital diagrams have been calculated with the density functional theory (DFT) method, and their electronic spectra have been discussed on the basis of time-dependent DFT calculations. The compound [ReCl3(OPPh3)(dppt)] has been studied additionally by magnetic measurement. The magnetic behavior is characteristic of mononuclear complexes with d4 low-spin octahedral Re(III) complexes (3T1g ground state) and arise because of the large spin–orbit coupling (ζ = 2500 cm−1), which gives diamagnetic ground state.  相似文献   

13.
Nitrosyl Bromo Complexes of Rhenium: Re(NO)2Br3 and [Re(NO)2Br4]?; Crystal Structure of PPh4[Re(NO)2Br4] · 2 CCl4 PPh4[Re(NO)2Br4] is prepared in the form of dark red-brown powder by the reaction of PPh4[Re(NO)2Cl4] with excess boron tribromide. From a solution of CH2Br2 and CCl4 it crystallizes with two moles CCl4, one of which splits off easily in vacuo. The reaction of aluminum tribromide in CH2Br2 solution leads to a slightly soluble red-brown Re(NO)2Br3 powder. The i.r. spectra indicate cis positions of the covalently bound NO ligands in both complexes. Re(NO)2Br3 is dimeric via bromo bridges. The crystal structure determination of PPh4[Re(NO)2Br4] · 2 CCl4 was solved by X-ray diffraction methods at ? 115°C. The complex crystallizes in the monoclinic space group P21/c with four formula units per unit cell (4434 independent reflexions, R = 0.085). The unit cell dimensions are a = 1 092.3 pm, b = 2088.0 pm, c = 1 657.6 pm, β = 96.10°. The structure consists of P(C6H5)4? cations, [Re(NO)2Br4]? anions and intercalated CCl4 molecules. In the anion the NO groups are covalently bound to the Re atom like \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {{\rm RE}}\limits^ \ominus = \mathop {\rm N}\limits^ \oplus = {\rm O} $\end{document} and they are arranged in cis position to one another.  相似文献   

14.
Syntheses and Structure of Chiral Metallatetrahedron Complexes of the Type [Re2(M1PPh3)(M2PPh3)(μ‐PCy2)(CO)7C≡CPh] (M1 = Ag, Au; M2 = Cu, Ag, Au) From the reaction of Li[Re2(μ‐H)(μ‐PCy2)(CO)7(C(Ph)O)] ( 1 ) with Ph3AuC≡CPh both benzaldehyde and the trinuclear complex Li[Re2(AuPPh3)(μ‐PCy2)(CO)7C≡CPh] ( 2a ) were obtained in high yield. The complex anion was isolated as its PPh4‐salt 2b . The latter reacts with coinage metal complexes PPh3M2Cl [M2 = Cu, Ag, Au] to give chiral heterometallatetrahedranes of the general formula [Re2(AuPPh3)(M2PPh3)(μ‐PCy2)(CO)7C≡CPh] (M2 = Cu 3a , Ag 3b , Au 3c ). The corresponding complex [Re2(AgPPh3)2(μ‐PCy2)(CO)7C≡CPh] ( 3d ) is obtained from the reaction of [Re2(AgPPh3)2(μ‐PCy2)(CO)7Cl] ( 4 ) with LiC≡CPh. 3d undergoes a metathesis reaction in the presence of PPh3CuCl giving [Re2(AgPPh3)(CuPPh3)(μ‐PCy2)(CO)7C≡CPh] ( 3e ) and PPh3AgCl. Analogous metathesis reactions are observed when 3c is reacted with PPh3AgCl or PPh3CuCl giving 3a or 3b , respectively. The reaction of 1 with PPh3AuCl gives benzaldehyde and Li[Re2(AuPPh3)(μ‐PCy2)(CO)7Cl] ( 5a ) which upon reaction with PhLi forms the trinuclear complex Li[Re2(AuPPh3)(μ‐PCy2)(CO)7Ph] ( 6a ). Again this complex was isolated as its PPh4‐salt 6b . In contrast to 2b , 6b reacts with one equivalent of Ph3PAuCl by transmetalation to give Ph3PAuPh and PPh4[Re2(AuPPh3)(μ‐PCy2)(CO)7Cl] ( 5b ). The X‐ray structures of the compounds 3a , 3b , 3e and 4 are reported.  相似文献   

15.
(PPh4)2[Cl2Re(N3S2)(μ‐NSN)(μ‐N≡ReCl3)]2 – a Rhenium(VII) Complex with a Nitrido, a Dinitridosulfato(II), and a Rhena‐3,5‐dithia‐2,4,6‐triazino Function The title compound has been prepared from PPh4[ReVIICl4(NSCl)2] with N(SiMe3)3 in dichloromethane solution to give red‐brown single crystals, which were suitable for a crystal structure determination. As a by‐product PPh4[ReNCl4] is formed. (PPh4)2[Cl2ReVII(N3S2)(μ‐NSN)(μ‐N≡ReVIICl3)]2 ( 1 ): Space group P21/c, Z = 2, lattice dimensions at –80 °C: a = 1280.8(2), b = 1017.5(1), c = 2467.8(3) pm, β = 95.04(1)°, R = 0.049. The complex anion of 1 consists of a planar ReN3S2‐heterocycle which is connected with the second rhenium atom by a μ‐nitrido bridge as well as by a μ‐dinitridosulfato(II) ligand to form a planar Re2(N)(NSN) six‐membered heterocycle. This [Cl2Re(N3S2)(μ‐NSN)(μ‐N≡ReCl3)] unit dimerizes via one of the N‐atoms of the (NSN)4– ligand to give a centrosymmetric Re2N2 four‐membered ring.  相似文献   

16.
Heterobinuclear Complexes: Synthesis and X‐ray Crystal Structures of [RuRh(μ‐CO)(CO)4(μ‐PtBu2)(tBu2PH)], [RuRh(μ‐CO)(CO)3(μ‐PtBu2)(μ‐Ph2PCH2PPh2)], and [CoRh(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)] [Ru3Rh(CO)73‐H)(μ‐PtBu2)2(tBu2PH)(μ‐Cl)2] ( 2 ) yields by cluster degradation under CO pressure as main product the heterobinuclear complex [RuRh(μ‐CO)(CO)4(μ‐PtBu2)(tBu2PH)] ( 4 ). The compound crystallizes in the orthorhombic space group Pcab with a = 15.6802(15), b = 28.953(3), c = 11.8419(19) Å and V = 5376.2(11) Å3. The reaction of 4 with dppm (Ph2PCH2PPh2) in THF at room temperature affords in good yields [RuRh(μ‐CO)(CO)3(μ‐PtBu2)(μ‐dppm)] ( 7 ). 7 crystallizes in the triclinic space group P 1 with a = 9.7503(19), b = 13.399(3), c = 15.823(3) Å and V = 1854.6 Å3. Moreover single crystals of [CoRh(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)] ( 9 ) could be obtained and the single‐crystal X‐ray structure analysis revealed that 9 crystallizes in the monoclinic space group P21/a with a = 11.611(2), b = 13.333(2), c = 18.186(3) Å and V = 2693.0(8) Å3.  相似文献   

17.
Syntheses and Structures of the Phosphorus and Nitrogenbridged Transition Metal Complexes [Pd(NPhPPh2)(PPh3)]2, [Pd(NPhPPh2)2 · Li(thf)]2, [Pd(NPhPPh2)Cl · Li(thf)3]2, [M(NPhPPh2)(HNPhPPh2)]2 (M?Pd, Pt), [M{Ph2P(NPh)2}2] (M?Co, Ni), [Ni(PPh2){Ph2P(NPh)2}]2 and [Ni2(PPh2)(NPhPPh2)(HNPhPPh2)3] . From the reaction of LiNPhPPh2 with Palladium-Nickel- and Cobaltcomplexes, depending on the reaction conditions, different monomeric and dimeric complexes can be isolated. In these compounds the (NPhPPh2)?-group acts as both a bridging and as a terminal ligand. [Pd(NPhPPh2)(PPh3)]2 ( 1 ), [Pd(NPhPPh2)2 · Li(thf)]2 ( 2 ) and [Pd(NPhPPh2)Cl · Li(thf)3]2 ( 3 ) are formed from the reaction of [PdCl2(PPh3)2] or [PdCl2(COD)] with LiNPhPPh2. In contrast to this from the reaction of Pd(Ac)2 and HNPhPPh2 (in the presence of zinc-dust) or [PtCl2(py)2] and LiNPhPPh2.  相似文献   

18.
Synthesis and Crystal Structures of (PPh4)2[In(S4)(S6)Cl] and (PPh4)2[In(S4)Cl3] InCl and PPh4Cl yield (PPh4)2[In2Cl6] in acetonitrile. This reacts with Na2S4 in presence of PPh4Cl, forming (PPh4)2[In(S4)(S6)Cl]. Its crystal structure was determined by X-ray diffraction (R = 0.075, 2 282 observed reflexions). It is isotypic with (PPh4)2[In(S4)(S6)Br] and contains anions with trigonal-bipyramidal coordination of In, Cl occupying an axial position, and the S4 and S6 groups being bonded in a chelate manner. The reaction of (PPh4)2[In2Cl6] and sulfur in acetonitrile yielded (PPh4)2[InCl5] and (PPh4)2[In(S4)Cl3]. The crystal structure analysis of the latter (R = 0.072, 4 080 reflexions) revealed an anion with distorted trigonal-bipyramidal coordination of In, the S4 group occupying one axial and one equatorial position; the S4 group shows positional disorder.  相似文献   

19.
The crystal and molecular structure of [Re(NO)2.09Br1.91(PPh3)2] and DFT studies of [Re(NO)2Br2(PPh3)2] are reported. The linearly bonded nitrosyl ligands adopt cis geometry, and two bulky triphenylphosphine molecules occupy axial positions of a distorted octahedral coordination sphere. The cis-nitrosyl grouping with respect to PPh3 molecules (π-acid ligands) is the result of the electronic influence of the multiply bonded ligand, which forces the metal nonbonding d electrons to lie in the plane perpendicular to the M–NO bond axis.  相似文献   

20.
Synthesis and Crystal Structure of (PPh4)3[Re2NCl10] The rhenium(V) nitrido complex (PPh4)3[Re2NCl10] ( 1 ) is obtained from the reaction of (PPh4)[ReNCl4] with 1, 3‐dioxan‐(2‐ylmethyl)diphenyl phosphine in CH2Cl2/CH3CN in form of orange red crystals with the composition 1 ·2CH2Cl2 crystallizing in the triclinic space group P1¯ with a = 1210.7(2), b = 1232.5(1), c = 2756.3(5) pm, α = 99.68(1)°, β = 100.24(1)°, γ = 98.59(1)° and Z = 2. The crystal structure contains two symmetry independent, centrosymmetrical complex anions [Re2NCl10]3‐ with a symmetrical nitrido bridge Re=N=Re and distances Re(1) ‐ N(1) = 181.34(5) and Re(2) ‐ N(2) = 181.51(4) pm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号