首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Rate constant of intermolecular electron transfer (ET) in a photoexcited donor-acceptor model system solvated by a cluster of polar molecules has been expressed in terms of the statistical distribution of the electrostatic potential energy difference between the reacting sites. This distribution has been calculated for a particular case of acetonitrile clusters a ≈120 K by MD computer simulation. The MD values of the cluster reorganization energy and the ET rate constant have been compared with the corresponding MD results for the donor-acceptor pair solvated in bulk acetonitrile and with theoretical predictions based on the continuum model.  相似文献   

3.
Experimental observations are presented on condensed-phase analogues of gas-phase dipole-bound anions and negatively charged clusters of polar molecules. Both monomers and small clusters of such molecules can reversibly trap conduction band electrons in dilute alkane solutions. The dynamics and energetics of this trapping have been studied using pulse radiolysis-transient absorption spectroscopy and time-resolved photoconductivity. Binding energies, thermal detrapping rates, and absorption spectra of excess electrons attached to monomer and multimer solute traps are obtained, and possible structures for these species are discussed. "Dipole coagulation" (stepwise growth of the solute cluster around the cavity electron) predicted by Mozumder in 1972 is observed. The acetonitrile monomer is shown to solvate the electron by its methyl group, just as the alkane solvent does. The electron is dipole-bound to the CN group; the latter points away from the cavity. The resulting negatively charged species has a binding energy of 0.4 eV and absorbs in the infrared. Molecules of straight-chain aliphatic alcohols solvate the excess electron by their OH groups; at equilibrium, the predominant electron trap is a trimer or a tetramer, and the binding energy of this solute trap is ca. 0.8 eV. Trapping by smaller clusters is opposed by the entropy that drives the equilibrium toward the electron in a solvent trap. For alcohol monomers, the trapping does not occur; a slow proton-transfer reaction occurs instead. For the acetonitrile monomer, the trapping is favored energetically, but the thermal detachment is rapid (ca. 1 ns). Our study suggests that a composite cluster anion consisting of a few polar molecules imbedded in an alkane "matrix" might be the closest gas-phase analogue to the core of solvated electron in a neat polar liquid.  相似文献   

4.
5.
Of current interest in our laboratory is the nature of photoinduced processes in the cavities of zeolites completely submerged in polar solvents, or polar-solvated zeolites (PSZ). The present study addresses the nature of electron trapping in PSZ with emphasis on the zeolites NaX and NaY. Free electrons were generated by two-photon, pulsed-laser excitation of either pyrene or naphthalene included in zeolite cavities. Trapped electrons were monitored by diffuse transmittance, transient absorption spectroscopy at visible wavelengths. In anhydrous alcohols, electron trapping by Na(4)(4+) ion clusters was observed in both NaX and NaY. The resulting trapped electrons decayed over the course of tens of milliseconds. No evidence for alcohol-solvated electrons was found. More varied results were observed in solvents containing water. In NaX submerged in CH(3)OH containing 5% or higher water, species having microsecond lifetimes characteristic of solvated electrons were observed. By contrast, a 2 h exposure of NaY to 95/5 CH(3)OH/H(2)O had no effect on electron trapping relative to anhydrous CH(3)OH. The difference between NaX and NaY was explained by how fast water migrates into the sodalite cage. Prolonged exposure to water at room temperature or exposure to water at elevated temperatures was necessary to place water in the sodalite cages of NaY and deactivate Na(4)(4+) as an electron trap. Additional studies in NaY revealed that solvent clusters eventually become lower energy traps than Na(4)(4+) as the water content in methanol increases. In acetonitrile-water mixtures, electron trapping by Na(4)(4+) was eliminated and no equivalent species characteristic of solvated electrons in methanol-water mixtures was observed. This result was explained by the formation of low energy solvated electrons which cannot be observed in the visible region of the spectrum. Measurements of the rate of O(2) quenching in anhydrous solvents revealed rate constants for the quenching of ion cluster trapped electrons that were 2-4 times higher than that for pyrene triplets. In NaX, the rate constant in methanol was 10(4) times smaller than that in cyclohexane, showing greater inhibition of O(2) reactivity in the medium of PSZ. The results of this study point out the conditions under which Na(4)(4+) is active as an electron trap in PSZ and that water must be present in the sodalite cage to produce solvated electrons in the supercage.  相似文献   

6.
Magnetic circular dichroism of trapped electrons in frozen matrices has been observed for the first time. It is concluded that the excited state of trapped electrons solvated by water molecules at 77 K has orbital angular momentum whereas that of electrons solvated by ethanol molecules at 77 K does not. This indicates that the symmetry of the trapping potential in aqueous glass is high whereas that in ethanol glass is low.  相似文献   

7.
We study the solvation of polar molecules in water. The center of water's dipole moment is offset from its steric center. In common water models, the Lennard-Jones center is closer to the negatively charged oxygen than to the positively charged hydrogens. This asymmetry of water's charge sites leads to different hydration free energies of positive versus negative ions of the same size. Here, we explore these hydration effects for some hypothetical neutral solutes, and two real solutes, with molecular dynamics simulations using several different water models. We find that, like ions, polar solutes are solvated differently in water depending on the sign of the partial charges. Solutes having a large negative charge balancing diffuse positive charges are preferentially solvated relative to those having a large positive charge balancing diffuse negative charges. Asymmetries in hydration free energies can be as large as 10 kcal/mol for neutral benzene-sized solutes. These asymmetries are mainly enthalpic, arising primarily from the first solvation shell water structure. Such effects are not readily captured by implicit solvent models, which respond symmetrically with respect to charge.  相似文献   

8.
Computer generated structures of several polar liquids (water at 298 and 373 K, 1-propanol and 2-propanol at 298 K) have been analyzed in order to identify the regions of attractive potential that can serve as pre-existing sites for primary localization of an excess electron. Properties of pre-existing electron traps have been described in terms of statistical distributions of their geometrical parameters, energy levels and persistence times. The obtained results can explain, at least qualitatively, differences in the localization process in the considered matrices.  相似文献   

9.
The main concepts of the new theory of processes with the participation of excess electrons in polar liquids are considered. The theory takes into account that (1) polar liquids are electrostatically inhomogeneous (local potentials on molecules are different) and (2) a molecule can accept an electron for a short time to produce an anion in an unstable state with a certain energy and lifetime. A discrete model of a substance consisting of molecules with constant dipole moments is used. Excess electrons in a liquid are described by energy distribution density, and the behavior of electrons, by quantum mechanics equations. The experimental data on the photoionization of water and aqueous solutions of salts and the low threshold energy of photons (~6.5 eV) at which solvated electrons appear in water are explained. The absorption spectra of water with excess electrons at the first and subsequent time moments after their photogeneration are reproduced theoretically. The dependence of the photoemission of solvated electrons from potassium-ammonia solutions on the energy of photons is interpreted. The continuous spectrum of spontaneous radiation of solvated electrons in liquid ammonia and water is calculated. The optical absorption spectra of solvated electrons in such polar liquids as water and ammonia are reproduced.  相似文献   

10.
Motivated by recent ultrafast spectroscopic experiments [Martini et al., Science 293, 462 (2001)], which suggest that photoexcited solvated electrons in tetrahydrofuran (THF) can relocalize (that is, return to equilibrium in solvent cavities far from where they started), we performed a series of nonequilibrium, nonadiabatic, mixed quantum/classical molecular dynamics simulations that mimic one-photon excitation of the THF-solvated electron. We find that as photoexcited THF-solvated electrons relax to their ground states either by continuous mixing from the excited state or via nonadiabatic transitions, approximately 30% of them relocalize into cavities that can be over 1 nm away from where they originated, in close agreement with the experiments. A detailed investigation shows that the ability of excited THF-solvated electrons to undergo photoinduced relocalization stems from the existence of preexisting cavity traps that are an intrinsic part of the structure of liquid THF. This explains why solvated electrons can undergo photoinduced relocalization in solvents like THF but not in solvents like water, which lack the preexisting traps necessary to stabilize the excited electron in other places in the fluid. We also find that even when they do not ultimately relocalize, photoexcited solvated electrons in THF temporarily visit other sites in the fluid, explaining why the photoexcitation of THF-solvated electrons is so efficient at promoting recombination with nearby scavengers. Overall, our study shows that the defining characteristic of a liquid that permits the photoassisted relocalization of solvated electrons is the existence of nascent cavities that are attractive to an excess electron; we propose that other such liquids can be found from classical computer simulations or neutron diffraction experiments.  相似文献   

11.
Size-dependent features of the electron localization in negatively charged formamide clusters (FAn-, n = 5-21) have been studied by photodetachment spectroscopy. In the photoelectron spectra for all the sizes studied, two types of bands due to different isomers of anions were found. The low binding energy band peaking around 1 eV is assigned to the solvated electron state by relative photodetachment cross-section measurements in the near-infrared region. It is suggested that nascent electron trapping is dominated by formation of the solvated electron. The higher energy band originates from the covalent anion state generated after a significant relaxation process, which exhibits a rapid increase of electron binding energy as a function of the cluster size. A unique behavior showing a remarkable band intensity of the higher energy band was found only for n = 9.  相似文献   

12.
The preferential solvation of solutes in mixed solvent systems is an interesting phenomenon that plays important roles in solubility and kinetics. In the present study, solvation of a lithium atom in aqueous ammonia solution has been investigated from first principles molecular dynamics simulations. Solvation of alkali metal atoms, like lithium, in aqueous and ammonia media is particularly interesting because the alkali metal atoms release their valence electrons in these media so as to produce solvated electrons and metal counterions. In the present work, first principles simulations are performed employing the Car-Parrinello molecular dynamics method. Spontaneous ionization of the Li atom is found to occur in the mixed solvent system. From the radial distribution functions, it is found that the Li(+) ion is preferentially solvated by water and the coordination number is mostly four in its first solvation shell and exchange of water molecules between the first and second solvation shells is essentially negligible in the time scale of our simulations. The Li(+) ion and the unbound electron are well separated and screened by the polar solvent molecules. Also the unbound electron is primarily captured by the hydrogens of water molecules. The diffusion rates of Li(+) ion and water molecules in its first solvation shell are found to be rather slow. In the bulk phase, the diffusion of water is found to be slower than that of ammonia molecules because of strong ammonia-water hydrogen bonds that participate in solvating ammonia molecules in the mixture. The ratio of first and second rank orientational correlation functions deviate from 3, which suggests a deviation from the ideal Debye-type orientational diffusion. It is found that the hydrogen bond lifetimes of ammonia-ammonia pairs is very short. However, ammonia-water H-bonds are found to be quite strong when ammonia acts as an acceptor and these hydrogen bonds are found to live longer than even water-water hydrogen bonds.  相似文献   

13.
Two or more polar molecules can trap an excess electron either in a dipole-bound fashion where it is located outside of the cluster (dipole-bound electron) or inside the cluster (solvated electron). The topology of the electron density in dipole-bound and solvated-electron clusters has been examined for the paradigm (HF)3- cluster. As spatial confinement of the excess electron increases, a non-nuclear maximum (or attractor) of the electron density eventually forms, which suggests that the solvated electron can be described as a topological atom with its own set of physicochemical properties.  相似文献   

14.
《Chemical physics》2005,308(1-2):125-133
The Monte-Carlo simulations are used to investigate the dissociation of a Coulomb correlated charge pair at an idealized interface between an electron accepting and an electron donating molecular material. In the simulations the materials are represented by cubic lattices of sites, with site the energies spread according to Gaussian distributions. The influence of temperature, applied external fields, and the width of the Gaussian densities of states distribution for both the electron and the hole transporting material are investigated. The results show that the dissociation of geminate charge pairs is assisted by disorder and the results can be understood in terms of a two-step model. In the first step, the slow carrier in the most disordered material jumps away from the interface. In the following, second step, the reduced Coulombic attraction allows the faster carrier in the less disordered material to escape from the interface by thermally activated hopping. When the rate for geminate recombination at the interface is very low (<1 ns−1) the simulations predict a high yield for carrier collection, as observed experimentally. Comparison of the simulated and experimentally observed temperature dependence of the collection efficiency indicates that at low temperature dissociation of the geminate charge pairs may be one of the factors limiting the device performance.  相似文献   

15.
The influence of polar species on the transport and trapping of charge carriers is discussed. Calculations performed on a model molecular lattice demonstrate that polar dopants locally modify the polarization energy thus creating traps for charge carriers in the vicinity of the dipole. The presence of polar dopants in disordered solids gives rise to a broadening of the density-of-states function. A scheme of a molecular switch has been put forward, based on electrostatic interactions between photochromic moieties and charge carriers travelling on a molecular wire (conjugated polymer chain).  相似文献   

16.
Charge migration between electron trapping sites within the mixed-phase titania photocatalyst Degussa P25 has been studied. In addition to previously described lattice electron trapping sites on both anatase and rutile phases, surface electron trapping sites and an anatase-rutile interface trapping site specific to Degussa P25 are identified. The relationship between these sites and recombination with surface hole trapping sites is also determined. It is experimentally shown that upon band-gap illumination holes appear at the surface and preferentially recombine with electrons in surface trapping sites. These findings indicate that in mixed-phase TiO2, such as Degussa P25, photogenerated holes are trapped exclusively on the particle surface, while photogenerated electrons are trapped within the nanoparticle lattice. Recombination reactions are dominated by surface reactions that follow charge migration. These findings indicate that, in mixed-phase TiO(2), such as Degussa P25, a random flight mechanism of recombination predominates. Such knowledge simplifies the mechanistic mathematical models used for process design and points the way for improving future oxidative titania catalysts.  相似文献   

17.
Solvent effects on electronic structures and chain conformations of alpha-oligothiophenes nTs (n = 1 to 10) are investigated in solvents of n-hexane, 1,4-dioxane, carbon tetrachloride, chloroform, and water by using density functional theory (DFT) and molecular dynamics (MD) simulations. Both implicit and explicit solvent models are employed. The polarized continuum model (PCM) calculations and MD simulations demonstrate the weak solvent effects on the electronic structures of alpha-oligothiophenes. The lowest dipole-allowed vertical excitation energies of nTs, obtained from time-dependent DFT/PCM calculations at the B3LYP/6-31G(d) level, exhibit a red shift as the solvent polarity increases, in agreement with experiments. The studied solvents have little impact on the state order of the low-lying excited states provided that the nTs are kept in C2h or C2v symmetry. The MD simulations demonstrate that the chain conformations are distorted to some extent in polar and nonpolar solvents. A qualitative picture of the distribution of solvent molecules around the solvated nTs is drawn by means of radial and spatial distribution functions. The S...H-O and pi...H-O solute-solvent interactions are insignificant in aqueous solution.  相似文献   

18.
We investigate the binding site of solvated electrons in amorphous D(2)O clusters and D(2)O wetting layers adsorbed on Cu(111) by means of two-photon photoelectron (2PPE) spectroscopy. On the basis of different interactions of bulk- or surface-bound solvated electrons with rare gas atoms, titration experiments using Xe overlayers reveal the location of the electron solvation sites. In the case of flat clusters with a height of 2-4 bilayers adsorbed on Cu(111), solvated electrons are found to reside at the ice-vacuum interface, whereas a bulk character is found for solvated electrons in wetting layers. Furthermore, time-resolved experiments are performed to determine the origin of the transition between these different solvation sites with increasing D(2)O coverage. We employ an empirical model calculation to analyse the rate of electron transfer back to the substrate and the energetic stabilization of the solvated electrons, which allows further insight into the binding site for clusters. We find that the solvated electrons reside at the edges of the clusters. Therefore, we attribute the transition from surface- to bulk-solvation to the coalescence of the clusters to a closed ice film occurring at a nominal coverage of 2-3 BL, while the distance of the binding sites to the metal-ice interface is maintained.  相似文献   

19.
Theoretical studies of the solvated electrons (HCN)n- (n=3, 4) reveal a variety of electron trapping possibilities in the (HCN)n (n=3, 4) clusters. Two isomers for (HCN)3- and four isomers for (HCN)4- are obtained at the MP2aug-cc-pVDZ+dBF (diffusive bond functions) level of theory. In view of vertical electron detachment energies (VDEs) at the CCSD(T) level, the excess electron always "prefers" locating in the center of the system, i.e., the isomer with higher coordination number shows larger VDE value. However, the most stable isomers of the solvated electron state (HCN)3- and (HCN)4- are found to be the linear Cinfinitynu and Dinfinityh structures, respectively, but not the fullyl symmetric structures which have the largest VDE values.  相似文献   

20.
The competition between diffusive hops and direct tunneling of solvated electrons to scavenger molecules in solid classes has been discussed in the literature. We have considered these two reaction paths in terms of stationary kinetic diffusion equations and multiphonon electron-transfer rate theory, and for coupling of the solvated electron to a broad continuum of nuclear modes. Diffusion can only be expected to be important for less polar glasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号