首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Equilibrium geometries, force constants, barriers to linearity, charge distributions, dipole moments, and electron spin density of HOO, HOS, HSO, and HSS radicals are calculated by CNDO/2 and INDO methods using respectively the original and some recently introduced scheme of parametrization. Three sets of calculations, namely, CNDO/2(sp), CNDO/2(spd), and INDO, are performed, and the results are compared with the ab initio and experimental values, wherever available. A good agreement is obtained for geometry in the case of CNDO/2 (sp) and INDO calculations. The performance of CNDO/2 (spd) calculations in this regard is quite unreliable. The stretching force constants are considerably overestimated by all the methods, while the bending force constants are in reasonable agreement with the ab initio values. With respect to dipole moments, the CNDO/2 values are in better agreement with the ab initio results than the INDO values. In all the cases, the dipole moment vector directions are in complete disagreement with the ab initio predictions.  相似文献   

2.
The CNDO/INDO molecular orbital formalism introduced in the preceding paper has been applied to a large number of atom combinations up to bromine under the inclusion of the first transition metal series. The results are compared with experimental data (geometries, ionization potentials, dipole moments) or with the results of sophisticatedab initio calculations (one electron energies, net charges, atomic populations). The semiempirical model reproduces for a wide range of molecules the experimental andab initio data with remarkable success.  相似文献   

3.
A new method is presented for approximate ab initio calculations in quantum chemistry. It is called CCAM (charge conserving approximation method). The calculation method does not include the use of empirical parameters. We use Slater type orbitals as basis set, replacing STO's by STO-2G functions to evaluate three- and four-center integrals and making the STO-2G two-orbital charge distributions have the same total charge as STO. The results are presented for test calculations on five molecules. In view of these results, CCAM is better than ab initio calculations over STO-6G in the results on total energies, kinetic energies and occupied orbital energies. In atomic populations, dipole moments and unoccupied orbital energies, CCAM is also satisfactory. We estimate that CCAM would be as fast as ab initio calculations over STO-2G in evaluating molecular integrals.  相似文献   

4.
We have investigated the conformational dependences of the torsional potential and dipole moment of double-rotor molecules related to acetone, using semiempirical and ab initio calculations and expressing the results in terms of limited Fourier-series expansions. The use of the isodynamic operations of nonrigid molecules to obtain symmetry-adapted quasianalytic forms for the various properties helps compute the representative surfaces with a minimum number of points. Potential surfaces have been calculated for planar ground-state acetone (CNDO /2, STO /3G, and STO /4-31G) and both pyramidal excited-triplet acetone and ground-state dimethylamine (CNDO /2). For groundstate acetone STO /4-31G brings the results obtained with STO /3G closer to those from CNDO /2 and from experiment. The potential surface of excited-triplet acetone appears intermediate between those of ground-state acetone and dimethylamine. For dipole moments the convergence of the harmonic expansions of the vector components is slower than that of the torsional potential whereas that of the vector magnitude is faster.  相似文献   

5.
Semiempirical CNDO, AM1, PM3 and ab initio HF/STO-3G, HF/3-21G(d), and HF/6-31(d) methods were employed in the geometry optimization of the phenothiazine and the corresponding radical cation. The results obtained from the PM3 performances were as good as those from the ab initio calculations in the structure optimization of both phenothiazine and phenothiazine radical cation. The PM3 method was used to optimize the structures of a series of N-substituted phenothiazine derivatives and their radical cations. The PM3-optimized results were then analyzed with the ab initio calculation at the 6-311G(d,p) level, which yielded the total energy, frontier molecular orbitals, dipole moments, and charge and spin density distributions of the phenothiazine derivatives and their radical cations.  相似文献   

6.
Dipole moments and charge distributions for twenty molecules of widely different types have been calculated using (a) the CNDO/2 method and (b) a CNDO/2D method in which the orbitals from the CNDO/2 method are deorthogonalized by a Löwdin transformation and are then used to calculate the dipole moments in a rigorous manner. A statistical analysis of the results for the dipole moments calculated by the CNDO/2D method shows that they are in very slightly better agreement with experiment than those from the CNDO/2 method. The net charge distributions from the CNDO/2D method follow more closely the trends of ab initio calculations than do the CNDO/2 net charges.
Zusammenfassung Dipolmomente und Ladungsdichten von Molekülen unterschiedlichen Typs wurden mittels des CNDO/2- und CNDO/2D-Verfahrens (d. i. mit delokalisierten Löwdin-Orbitalen als AO's) berechnet. Eine statistische Analyse zeigt, daß die Resultate der zweiten Methode etwas besser als die der ersten den experimentellen Ergebnissen folgen. Das Analoge gilt für die Nettoladungsverteilungen in bezug auf die Trends bei ab initio-Rechnungen.

Résumé Les moments dipolaires et les distributions de charge pour vingt molécules de types divers ont été calculés par: a) la méthode CNDO/2; b) une méthode CNDO/2D où les orbitales de CNDO/2 sont déorthogonalisées par une transformation de Löwdin. Une analyse statistique montre que les moments dipolaires calculés par CNDO/2D sont légèrement en meilleur accord avec l'expérience que ceux calculés par CNDO/2. Les distributions de charge de CNDO/2D sont plus ressemblantes à celles de calculs ab-initio que ne le sont les distributions de CNDO/2.


This work represents part of the Ph.D. Dissertation submitted to the University of Virginia by D. D. S. and was supported by Grants No. 1-F01-GM41986-01 from the National Institutes of Health, Bethesda, Maryland, U.S.A., and No. AF-AFOSR-1184-67 from the Air Force Directorate of Scientific Research.

NASA Research Trainee.  相似文献   

7.
The total dipole moments, molecular energies, and π-electron densities for the linear and orthogonal pyrrole ?acetonitrile hydrogen-bonded complexes were studied in the ab initio valence bond framework using the minimal STO -3G basis set. That the orthogonal conformation, although slightly less stable than the other, is predominant as observed in carbon tetrachloride, can be explained by its relatively high symmetry number.  相似文献   

8.
Reference completely ab initio 6–3G and nonempirical 3G/MODPOT (ab initio effective core model potential) LCAO -MO -SCF calculations (using the same valence atomic orbital basis) were performed for a series of boron hydrides (B4H10, B5H9, B5H11, and B6H10) and a test 3G/MODPOT + VRDDO (variable retention of diatomic differential overlap for charge conserving integral prescreening) calculation were also performed for B5H9, B6H10, and B10H14. The agreement between the ab initio 6–3G and the corresponding 3G/MODPOT calculations was excellent for valence orbital energies, gross atomic populations, and dipole moments. The results also compared favorably to previous ab initio minimum STO basis results of Lipscomb and coworkers. The 3G/MODPOT + VRDDO calculations verified that for such spatially compact molecules (such as boron hydrides, which are fragments of polyhedra), the VRDDO procedure does not result in a noticeable savings in computer time for molecules of the size and shape of B5H9 and B6H10, in contrast to the savings previously realized for organic molecules of comparable atomic size. However, the agreement in calculational results between the 3G/MODPOT and the 3G/MODPOT +VRDDO results was still as extremely close as it had been for the organic molecules. 3G/MODPOT calculations were also carried out for B8H12, B9H15, B10H14, B10H14?2, 1,2-C2B4H6, and 1,6-C2B4H6 and the results compared to the previous minimum STO basis results. For B10H14, the 3G/MODPOT +VRDDO method led to savings in computer time of 28% over the 3G/MODPOT method itself. The agreement of the 3G/MODPOT results with available experimental photoelectron spectral data for B5H9 and 1,6-C2B4H6 was as good as that of the previous ab initio minimum STO basis calculations.  相似文献   

9.
The geometries of molecules H_3AXAH_3(X=O,S,Se and A=C,Si)have been optimizedusing STO-3G ab initio calculations and gradient method and the results are in good agreement withreported experimental values.From the STO-3G optimized geometries,we have also calculated theelectronic structures of these molecules using 4-31G and 6-31G basis sets to obtain the MO energies.atomic net charges and dipole moments.The ionization potentials calculated by 6-31G basis set are ingood agreement with experimental values.  相似文献   

10.
The effect of polarization functions for ab initio molecular orbital calculations at the 3-21G* level has been studied for disiloxane. Calculated molecular geometry, dipole moment, and the linearization barrier variation were analyzed for different uncontracted polarization functions. It was concluded that variation of the polarization function on oxygen has only a minor influence on the molecular properties of disiloxane, but its presence is required to obtain a bent geometry for the disiloxane bond. The calculated molecular properties of disiloxane are greatly influenced when the polarization function on silicon is varied. Two different values (0.3 and 0.9) for the exponent of the silicon polarization function provide results comparable to the experimental values for disiloxane. The only significant differences between the results obtained from ab initio calculations using the two polarization functions are in net atomic charges. The uncontracted polarization function of silicon with a value of 0.3 for its exponent is transferable to other organosilicon compounds. Calculated molecular geometries of flexible or rigid structures are in very good agreement with the experimental values.  相似文献   

11.
Potential energy surface for methyl fluoride dimer has been studied theoretically with ab initio molecular orbital method, using a 4-31G basis set. Dimer dissociation energies, Mulliken electronic populations, and dipole moments were obtained.  相似文献   

12.
Semiempirical and ab initio calculations for the diphenylmethyl anion and related species are reported. MINDO/3 calculations indicate a coplanar anion with an enlarged bond angle of ~139° to counteract the steric repulsions. MNDO calculations reveal an expanded bond angle with somewhat greater twist (21°). The ab initio calculations (STO -3G level) reveal an expanded central bond angle with an intermediate degree of phenyl twist. The results are compared with experimental data for this and related anions.  相似文献   

13.
The geometries, relative conformational energies, and dipole moments of mono and polychlorosilanes have been calculated using ab initio molecular orbital (MO) theory. Calculations at the HF/3–21G(*) level, with the exception of dipole moments, give reasonable agreement with experimental data. A new MM2 force field for chlorosilanes, which includes terms for bond length shortening and bond angle compression due to the attachment of electronegative Cl atoms, has been developed on the basis of experimental and ab initio results. The new force field is generally successful in predicting structural parameters, but is unable to reproduce the dipole moments of several model systems. While dipole moment predictions are not the authors' main interest, this failure defines a shortcoming in the MM2 method. The new parameters have been applied to problems in the prediction of stereochemistries of cyclic systems, and compared with experimental results where data are available.  相似文献   

14.
The cyanide-isocyanide isomerization has been studied with ab initio calculations in an STO -3G basis as applied to NCNCO, NCCNO, NCOCN, and NCONC, and the corresponding isocyanides. Geometry optimization has been performed on these cyanides, their isocyanides, and their hypothetical transition states. The energies of isomerization were calculated to be 42.2, 29.8, 44.6, and 41.4 kcal/mol, respectively, while the energy barriers were found as 84.3, 67.5, 107.9, and 106.8 kcal/mol. Overlap populations and atomic charges were employed to provide simple correlations of the results.  相似文献   

15.
A general methodology for deriving geometry-dependent atomic charges is presented. The main ingredient of the method is a model that describes the molecular dipole moment in terms of geometry-dependent point charges. The parameters of the model are determined from ab initio calculations of molecular dipole moments and their Cartesian derivatives at various molecular geometries. Transferability of the parameters is built into the model by fitting ab initio calculations for various molecules simultaneously. The results show that charge flux along the bonds is a major contributing factor to the geometry dependence of the atomic charges, with additional contributions from fluxes along valence angles and adjacent bonds. Torsion flux is found to be smaller in magnitude than the bond and valence angle fluxes but is not always unimportant. A set of electrostatic parameters is presented for alkanes, aldehydes, ketones, and amides. Transferability of these parameters for a host of molecules is established to within 3 ?5% error in the predicted dipole moments. A possible extension of the method to include atomic dipoles is outlined. With the inclusion of such atomic dipoles and with the set of transferable point charges and charge flux parameters, it is demonstrated that molecular electrostatic potentials as well as electrostatic forces on nuclei can be reproduced much better than is possible with other models (such as potential derived charges). © 1995 by John Wiley & Sons, Inc.  相似文献   

16.
17.
Semiempirical (MNDOC, MINDO/3, AM1, and MNDO) and ab initio (STO-3G and 4-31G basis sets) calculations on the relative stabilities, structures, and dipole moments of the 8 theoretically possible tautomeric forms of pyrazolone are reported. It is shown that MNDO + CI and MINDO/3 predict that 5-hydroxy pyrazole, 3-hydroxy pyrazole, and 2-pyrazolin-5-on are the most stable. These results correspond to the known experimental data. Of all used quantum chemical methods, the MINDO/3 results for the dipole moments of the investigated tautomers are in best agreement with the known experimental data. The electronic excitation energies were calculated using the CNDO/S-CI method. The results are in good agreement with the experimental UV spectra.  相似文献   

18.
The molecular dipole moments, their derivatives, and the fundamental IR intensities of the X2CY (X = H, F, Cl; Y = O, S) molecules are determined from QTAIM atomic charges and dipoles and their fluxes at the MP2/6-311++G(3d,3p) level. Root-mean-square errors of +/-0.03 D and +/-1.4 km mol(-1) are found for the molecular dipole moments and fundamental IR intensities calculated using quantum theory of atoms in molecules (QTAIM) parameters when compared with those obtained directly from the MP2/6-311++G(3d,3p) calculations and +/-0.05 D and 51.2 km mol(-1) when compared with the experimental values. Charge (C), charge flux (CF), and dipole flux (DF) contributions are reported for all the normal vibrations of these molecules. A large negative correlation coefficient of -0.83 is calculated between the charge flux and dipole flux contributions and indicates that electronic charge transfer from one side of the molecule to the other during vibrations is accompanied by a relaxation effect with electron density polarization in the opposite direction. The characteristic substituent effect that has been observed for experimental infrared intensity parameters and core electron ionization energies has been applied to the CCFDF/QTAIM parameters of F2CO, Cl2CO, F2CS, and Cl2CS. The individual atomic charge, atomic charge flux, and atomic dipole flux contributions are seen to obey the characteristic substituent effect equation just as accurately as the total dipole moment derivative. The CH, CF, and CCl stretching normal modes of these molecules are shown to have characteristic sets of charge, charge flux, and dipole flux contributions.  相似文献   

19.
Molecular mechanics (MM4) calculations were carried out on cycloketones for ring sizes ranging from 4 to 11 carbon atoms. The MM4 relative energies for the various conformations of the cycloketones were compared to density functional theory (DFT) calculations (B3LYP/6‐31G*), which were also carried out in this work. For small ring sizes (n=4–6), calculated molecular geometries, dipole moments, moments of inertia, and vibrational spectra were compared to experimental data. The axial–equatorial energy differences in methyl‐substituted cyclohexanones were also calculated by MM4 and compared to ab initio, DFT, and experimental results. The results of the MM4 studies on cycloketones showed significant improvement from those of MM3 calculations performed in parallel with the MM4 calculations. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1451–1475, 2001  相似文献   

20.
A comparison ofab initio calculations employing different basis sets with corresponding CNDO/2 results for the Li+/HCONH2 complex shows that these methods lead to completely different energy surfaces for this system. Reduction of the basis set, even to the minimal size, does not bring about serious changes in the results of theab initio calculations, whereas in the semiempirical treatment some methodical errors seem to occur. When using however, theab initio minimum geometry the CNDO/2 calculations also give a qualitatively correct picture for the influence of the cation on the amide modecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号