首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Let ${Y_{m|n}^{\ell}}$ be the super Yangian of general linear Lie superalgebra for ${\mathfrak{gl}_{m|n}}$ . Let ${e \in \mathfrak{gl}_{m\ell|n\ell}}$ be a “rectangular” nilpotent element and ${\mathcal{W}_e}$ be the finite W-superalgebra associated to e. We show that ${Y_{m|n}^{\ell}}$ is isomorphic to ${\mathcal{W}_e}$ .  相似文献   

2.
We consider the block band matrices, i.e. the Hermitian matrices $H_N$ , $N=|\Lambda |W$ with elements $H_{jk,\alpha \beta }$ , where $j,k \in \Lambda =[1,m]^d\cap \mathbb {Z}^d$ (they parameterize the lattice sites) and $\alpha , \beta = 1,\ldots , W$ (they parameterize the orbitals on each site). The entries $H_{jk,\alpha \beta }$ are random Gaussian variables with mean zero such that $\langle H_{j_1k_1,\alpha _1\beta _1}H_{j_2k_2,\alpha _2\beta _2}\rangle =\delta _{j_1k_2}\delta _{j_2k_1} \delta _{\alpha _1\beta _2}\delta _{\beta _1\alpha _2} J_{j_1k_1},$ where $J=1/W+\alpha \Delta /W$ , $\alpha < 1/4d$ . This matrices are the special case of Wegner’s $W$ -orbital models. Assuming that the number of sites $|\Lambda |$ is finite, we prove universality of the local eigenvalue statistics of $H_N$ for the energies $|\lambda _0|< \sqrt{2}$ .  相似文献   

3.
A diamond detector of 3D architecture without any metallization is developed for spectroscopy of ionizing radiation and single particles detection. The carbon electrode system was fabricated using a femtosecond infrared laser ( $\lambda $ = 1,030 nm) to induce graphitization on the surface and inside 4.0  $\times $  4.0  $\times $  0.4 mm $^{3}$ single-crystal chemical vapor deposition diamond slab, resulting in an array of 84 buried graphite pillars of 30  $\upmu $ m diameter formed orthogonally to the surface and connected by surface graphite strips. Sensitivity to ionizing radiation with $^{90}$ Sr $\upbeta $ -source has been measured for the 3D detector and high charge collection efficiency is demonstrated.  相似文献   

4.
We consider a version of directed bond percolation on the triangular lattice such that vertical edges are directed upward with probability $y$ , diagonal edges are directed from lower-left to upper-right or lower-right to upper-left with probability $d$ , and horizontal edges are directed rightward with probabilities $x$ and one in alternate rows. Let $\tau (M,N)$ be the probability that there is at least one connected-directed path of occupied edges from $(0,0)$ to $(M,N)$ . For each $x \in [0,1]$ , $y \in [0,1)$ , $d \in [0,1)$ but $(1-y)(1-d) \ne 1$ and aspect ratio $\alpha =M/N$ fixed for the triangular lattice with diagonal edges from lower-left to upper-right, we show that there is an $\alpha _c = (d-y-dy)/[2(d+y-dy)] + [1-(1-d)^2(1-y)^2x]/[2(d+y-dy)^2]$ such that as $N \rightarrow \infty $ , $\tau (M,N)$ is $1$ , $0$ and $1/2$ for $\alpha > \alpha _c$ , $\alpha < \alpha _c$ and $\alpha =\alpha _c$ , respectively. A corresponding result is obtained for the triangular lattice with diagonal edges from lower-right to upper-left. We also investigate the rate of convergence of $\tau (M,N)$ and the asymptotic behavior of $\tau (M_N^-,N)$ and $\tau (M_N^+ ,N)$ where $M_N^-/N\uparrow \alpha _c$ and $M_N^+/N\downarrow \alpha _c$ as $N\uparrow \infty $ .  相似文献   

5.
In this article, we study the ${3\over 2}^{+}$ heavy and doubly heavy baryon states $\varXi^{*}_{cc}$ , $\varOmega^{*}_{cc}$ , $\varXi^{*}_{bb}$ , $\varOmega^{*}_{bb}$ , $\varSigma_{c}^{*}$ , $\varXi_{c}^{*}$ , $\varOmega_{c}^{*}$ , $\varSigma_{b}^{*}$ , $\varXi_{b}^{*}$ and $\varOmega_{b}^{*}$ by subtracting the contributions from the corresponding ${3\over 2}^{-}$ heavy and doubly heavy baryon states with the QCD sum rules, and we make reasonable predictions for their masses.  相似文献   

6.
We consider Hermitian and symmetric random band matrices H = (h xy ) in ${d\,\geqslant\,1}$ d ? 1 dimensions. The matrix entries h xy , indexed by ${x,y \in (\mathbb{Z}/L\mathbb{Z})^d}$ x , y ∈ ( Z / L Z ) d , are independent, centred random variables with variances ${s_{xy} = \mathbb{E} |h_{xy}|^2}$ s x y = E | h x y | 2 . We assume that s xy is negligible if |x ? y| exceeds the band width W. In one dimension we prove that the eigenvectors of H are delocalized if ${W\gg L^{4/5}}$ W ? L 4 / 5 . We also show that the magnitude of the matrix entries ${|{G_{xy}}|^2}$ | G x y | 2 of the resolvent ${G=G(z)=(H-z)^{-1}}$ G = G ( z ) = ( H - z ) - 1 is self-averaging and we compute ${\mathbb{E} |{G_{xy}}|^2}$ E | G x y | 2 . We show that, as ${L\to\infty}$ L → ∞ and ${W\gg L^{4/5}}$ W ? L 4 / 5 , the behaviour of ${\mathbb{E} |G_{xy}|^2}$ E | G x y | 2 is governed by a diffusion operator whose diffusion constant we compute. Similar results are obtained in higher dimensions.  相似文献   

7.
The nucleus $\ensuremath {\rm ^{127}Sb}$ , which is on the neutron-rich periphery of the $\ensuremath \beta$ -stability region, has been populated in complex nuclear reactions involving deep-inelastic and fusion-fission processes with $\ensuremath {\rm {}^{136}Xe}$ beams incident on thick targets. The previously known isomer at 2325 keV in $\ensuremath {\rm {}^{127}Sb}$ has been assigned spin and parity $\ensuremath 23/2^+$ , based on the measured $\ensuremath \gamma$ - $\ensuremath \gamma$ angular correlations and total internal conversion coefficients. The half-life has been determined to be 234(12) ns, somewhat longer than the value reported previously. The 2194 keV state has been assigned $\ensuremath J^{\pi} = 19/2^+$ and identified as an isomer with $\ensuremath T_{1/2} = 14(1) {\rm ns}$ , decaying by two $\ensuremath E2$ branches. The observed level energies and transition strengths are compared with the predictions of a shell model calculation. Two $\ensuremath 15/2^+$ states have been identified close in energy, and their properties are discussed in terms of mixing between vibrational and three-quasiparticle configurations.  相似文献   

8.
Zs. Podolyák  S. J. Steer  S. Pietri  M. Górska  P. H. Regan  D. Rudolph  A. B. Garnsworthy  R. Hoischen  J. Gerl  H. J. Wollersheim  H. Grawe  K. H. Maier  F. Becker  P. Bednarczyk  L. Cáceres  P. Doornenbal  H. Geissel  J. Grebosz  A. Kelic  I. Kojouharov  N. Kurz  F. Montes  W. Prokopowicz  T. Saito  H. Schaffner  S. Tashenov  A. Heinz  T. Kurtukian-Nieto  G. Benzoni  M. Pfützner  A. Jungclaus  D. L. Balabanski  C. Brandau  B. A. Brown  A. M. Bruce  W. N. Catford  I. J. Cullen  Zs. Dombrádi  M. E. Estevez  W. Gelletly  G. Ilie  J. Jolie  G. A. Jones  M. Kmiecik  F. G. Kondev  R. Krücken  S. Lalkovski  Z. Liu  A. Maj  S. Myalski  S. Schwertel  T. Shizuma  P. M. Walker  E. Werner-Malento  O. Wieland 《The European Physical Journal A - Hadrons and Nuclei》2009,42(3):489-493
Heavy neutron-rich nuclei have been populated through the relativistic fragmentation of a $\ensuremath ^{208}_{\ 82}{\rm Pb}$ beam at $\ensuremath E/A = 1$ GeV on a $\ensuremath 2.5 {\rm g/cm^2}$ thick Be target. The synthesised nuclei were selected and identified in-flight using the fragment separator at GSI. Approximately 300 ns after production, the selected nuclei were implanted in an $\ensuremath \sim 8$ mm thick perspex stopper, positioned at the centre of the RISING $\ensuremath \gamma$ -ray detector spectrometer array. A previously unreported isomer with a half-life $\ensuremath T_{1/2} = 163(5)$ ns has been observed in the N = 126 closed-shell nucleus $\ensuremath ^{205}_{\ 79}{\rm Au}$ . Through $ \gamma$ -ray singles and $ \gamma$ - $ \gamma$ coincidence analysis a level scheme was established. The comparison with a shell model calculation tentatively identifies the spin-parity of the excited states, including the isomer itself, which is found to be $\ensuremath I^{\pi} = (19/2^+)$ .  相似文献   

9.
Data accumulated recently for the exclusive measurement of the pp $ \rightarrow$ pp $ \pi^{+}_{}$ $ \pi^{-}_{}$ reaction at a beam energy of 0.793GeV using the COSY-TOF spectrometer have been analyzed with respect to possible events from the pp $ \rightarrow$ nn $ \pi^{+}_{}$ $ \pi^{+}_{}$ reaction channel. The latter is expected to be the only $ \pi$ $ \pi$ production channel, which contains no major contributions from resonance excitation close to threshold and hence should be a good testing ground for chiral dynamics in the $ \pi$ $ \pi$ production process. No single event has been found, which meets all conditions for being a candidate for the pp $ \rightarrow$ nn $ \pi^{+}_{}$ $ \pi^{+}_{}$ reaction. This gives an upper limit for the cross-section of 0.16μb (90% C.L.), which is more than an order of magnitude smaller than the cross-sections of the other two-pion production channels at the same incident energy.  相似文献   

10.
It is shown that for each finite number N of Dirac measures ${\delta_{s_n}}$ supported at points ${s_n \in {\mathbb R}^3}$ with given amplitudes ${a_n \in {\mathbb R} \backslash\{0\}}$ there exists a unique real-valued function ${u \in C^{0, 1}({\mathbb R}^3)}$ , vanishing at infinity, which distributionally solves the quasi-linear elliptic partial differential equation of divergence form ${-\nabla \cdot ( \nabla{u}/ \sqrt{1-| \nabla{u} |^2}) = 4 \pi \sum_{n=1}^N a_n \delta_{s_n}}$ . Moreover, ${u \in C^{\omega}({\mathbb R}^3\backslash \{s_n\}_{n=1}^N)}$ . The result can be interpreted in at least two ways: (a) for any number N of point charges of arbitrary magnitude and sign at prescribed locations s n in three-dimensional Euclidean space there exists a unique electrostatic field which satisfies the Maxwell-Born-Infeld field equations smoothly away from the point charges and vanishes as |s| ?? ??; (b) for any number N of integral mean curvatures assigned to locations ${s_n \in {\mathbb R}^3 \subset{\mathbb R}^{1, 3}}$ there exists a unique asymptotically flat, almost everywhere space-like maximal slice with point defects of Minkowski spacetime ${{\mathbb R}^{1, 3}}$ , having lightcone singularities over the s n but being smooth otherwise, and whose height function vanishes as |s| ?? ??. No struts between the point singularities ever occur.  相似文献   

11.
We review and update our results for $K\rightarrow \pi \pi $ decays and $K^0$ $\bar{K}^0$ mixing obtained by us in the 1980s within an analytic approximate approach based on the dual representation of QCD as a theory of weakly interacting mesons for large $N$ , where $N$ is the number of colors. In our analytic approach the Standard Model dynamics behind the enhancement of $\hbox {Re}A_0$ and suppression of $\hbox {Re}A_2$ , the so-called $\Delta I=1/2$ rule for $K\rightarrow \pi \pi $ decays, has a simple structure: the usual octet enhancement through the long but slow quark–gluon renormalization group evolution down to the scales $\mathcal{O}(1\, {\hbox { GeV}})$ is continued as a short but fast meson evolution down to zero momentum scales at which the factorization of hadronic matrix elements is at work. The inclusion of lowest-lying vector meson contributions in addition to the pseudoscalar ones and of Wilson coefficients in a momentum scheme improves significantly the matching between quark–gluon and meson evolutions. In particular, the anomalous dimension matrix governing the meson evolution exhibits the structure of the known anomalous dimension matrix in the quark–gluon evolution. While this physical picture did not yet emerge from lattice simulations, the recent results on $\hbox {Re}A_2$ and $\hbox {Re}A_0$ from the RBC-UKQCD collaboration give support for its correctness. In particular, the signs of the two main contractions found numerically by these authors follow uniquely from our analytic approach. Though the current–current operators dominate the $\Delta I=1/2$ rule, working with matching scales $\mathcal{O}(1 \, {\hbox { GeV}})$ we find that the presence of QCD-penguin operator $Q_6$ is required to obtain satisfactory result for $\hbox {Re}A_0$ . At NLO in $1/N$ we obtain $R=\hbox {Re}A_0/\hbox {Re}A_2= 16.0\pm 1.5$ which amounts to an order of magnitude enhancement over the strict large $N$ limit value $\sqrt{2}$ . We also update our results for the parameter $\hat{B}_K$ , finding $\hat{B}_K=0.73\pm 0.02$ . The smallness of $1/N$ corrections to the large $N$ value $\hat{B}_K=3/4$ results within our approach from an approximate cancelation between pseudoscalar and vector meson one-loop contributions. We also summarize the status of $\Delta M_K$ in this approach.  相似文献   

12.
Thulium-doped fiber lasers operating at wavelengths around 2  $\upmu $ m are rapidly developing a new class of coherent light sources with a high slope efficiency reaching 70 %. The 2- $\upmu $ m radiation sources have many advantages over the 1- $\upmu $ m sources, e.g., better eye-safety, relaxed non-linear limits and often more efficient material processing. Particularly important application of 2- $\upmu $ m fiber lasers is in a highly-efficient generation of wideband mid-infrared radiation through third order nonlinear effects in soft-glass fibers. In this paper we report on the development of passive components intended for fiber laser operation around 2  $\upmu $ m, namely fiber couplers and wavelength division multiplexers for combination of 1.6- and 2- $\upmu $ m radiation. Three commercially available fibers were used for the preparation of these components. The measured characteristics of the components are compared and the limitations are discussed, particularly the two-mode operation and high bend loss. Specific fiber designs are proposed in order to optimize the performance of the wavelength division multiplexer.  相似文献   

13.
The Schrödinger  equation for a particle of rest mass $m$ and electrical charge $ne$ interacting with a four-vector potential $A_i$ can be derived as the non-relativistic limit of the Klein–Gordon  equation $\left( \Box '+m^2\right) \varPsi =0$ for the wave function $\varPsi $ , where $\Box '=\eta ^{jk}\partial '_j\partial '_k$ and $\partial '_j=\partial _j -\mathrm {i}n e A_j$ , or equivalently from the one-dimensional  action $S_1=-\int m ds +\int neA_i dx^i$ for the corresponding point particle in the semi-classical approximation $\varPsi \sim \exp {(\mathrm {i}S_1)}$ , both methods yielding the equation $\mathrm {i}\partial _0\varPsi \approx \left( \frac{1}{2m}\eta ^{\alpha \beta }\partial '_{\alpha }\partial '_{\beta } + m + n e\phi \right) \varPsi $ in Minkowski  space–time  , where $\alpha ,\beta =1,2,3$ and $\phi =-A_0$ . We show that these two methods generally yield equations  that differ in a curved background  space–time   $g_{ij}$ , although they coincide when $g_{0\alpha }=0$ if $m$ is replaced by the effective mass $\mathcal{M}\equiv \sqrt{m^2-\xi R}$ in both the Klein–Gordon  action $S$ and $S_1$ , allowing for non-minimal coupling to the gravitational  field, where $R$ is the Ricci scalar and $\xi $ is a constant. In this case $\mathrm {i}\partial _0\varPsi \approx \left( \frac{1}{2\mathcal{M}'} g^{\alpha \beta }\partial '_{\alpha }\partial '_{\beta } + \mathcal{M}\phi ^{(\mathrm g)} + n e\phi \right) \varPsi $ , where $\phi ^{(\mathrm g)} =\sqrt{g_{00}}$ and $\mathcal{M}'=\mathcal{M}/\phi ^{(\mathrm g)} $ , the correctness of the gravitational  contribution to the potential having been verified to linear order $m\phi ^{(\mathrm g)} $ in the thermal-neutron beam interferometry experiment due to Colella et al. Setting $n=2$ and regarding $\varPsi $ as the quasi-particle wave function, or order parameter, we obtain the generalization of the fundamental macroscopic Ginzburg-Landau equation of superconductivity to curved space–time. Conservation of probability and electrical current requires both electromagnetic gauge and space–time  coordinate conditions to be imposed, which exemplifies the gravito-electromagnetic analogy, particularly in the stationary case, when div ${{\varvec{A}}}=\hbox {div}{{\varvec{A}}}^{(\mathrm g)}=0$ , where ${{\varvec{A}}}^{\alpha }=-A^{\alpha }$ and ${{\varvec{A}}}^{(\mathrm g)\alpha }=-\phi ^{(\mathrm g)}g^{0\alpha }$ . The quantum-cosmological Schrödinger  (Wheeler–DeWitt) equation is also discussed in the $\mathcal{D}$ -dimensional  mini-superspace idealization, with particular regard to the vacuum potential $\mathcal V$ and the characteristics of the ground state, assuming a gravitational  Lagrangian   $L_\mathcal{D}$ which contains higher-derivative  terms up to order $\mathcal{R}^4$ . For the heterotic superstring theory  , $L_\mathcal{D}$ consists of an infinite series in $\alpha '\mathcal{R}$ , where $\alpha '$ is the Regge slope parameter, and in the perturbative approximation $\alpha '|\mathcal{R}| \ll 1$ , $\mathcal V$ is positive semi-definite for $\mathcal{D} \ge 4$ . The maximally symmetric ground state satisfying the field equations is Minkowski  space for $3\le {\mathcal {D}}\le 7$ and anti-de Sitter  space for $8 \le \mathcal {D} \le 10$ .  相似文献   

14.
In this paper we study the Liouville-type properties for solutions to the steady incompressible Euler equations with forces in ${\mathbb {R}^N}$ . If we assume “single signedness condition” on the force, then we can show that a ${C^1 (\mathbb {R}^N)}$ solution (v, p) with ${|v|^2+ |p| \in L^{\frac{q}{2}}(\mathbb {R}^N),\,q \in (\frac{3N}{N-1}, \infty)}$ is trivial, v = 0. For the solution of the steady Navier–Stokes equations, satisfying ${v(x) \to 0}$ as ${|x| \to \infty}$ , the condition ${\int_{\mathbb {R}^3} |\Delta v|^{\frac{6}{5}} dx < \infty}$ , which is stronger than the important D-condition, ${\int_{\mathbb {R}^3} |\nabla v|^2 dx < \infty}$ , but both having the same scaling property, implies that v = 0. In the appendix we reprove Theorem 1.1 (Chae, Commun Math Phys 273:203–215, 2007), using the self-similar Euler equations directly.  相似文献   

15.
We present an extensive study of the underlying structure of femtosecond laser-induced nanogratings in fused silica. To explore the evolution of the three-dimensional structure of the nanopores and cracks, of which the nanogratings consist, we performed small angle X-ray scattering measurements as well as focused ion beam milling and scanning electron microscopy. Our results show that cracks with dimensions of (280  $\times $  25  $\times $  380) nm $^{3}$ and nanopores with typical diameters of (30  $\times $  25  $\times $  75) nm $^{3}$ are formed independent of various illumination parameters. With increasing number of laser pulses the smaller pores fuse to larger structures. Furthermore, the data suggest a cross-sectional change of the pores from cuboidal to ellipsoidal.  相似文献   

16.
Charmonium rescattering effects in the M1 transition of $ \psi$ (2S) $ \rightarrow$ $ \gamma$ $ \eta_{c}^{}$ are investigated by modeling a $ \chi_{{cJ}}^{}$ or J/ $ \psi$ rescattering into a $ \eta_{c}^{}$ final state. The absorptive and dispersive part of the transition amplitudes for the rescattering loops of $ \eta$ $ \psi$ ( $ \gamma^{{\ast}}_{}$ ) and $ \gamma$ $ \chi$ ( $ \psi$ ) are separately evaluated. The numerical results show that the contribution from the $ \gamma$ $ \chi$ ( $ \psi$ ) rescattering process is negligible. Compared with the virtual D $ \bar{{D}}$ (D *) rescattering processes, the $ \eta$ $ \psi$ ( $ \gamma^{{\ast}}_{}$ ) process may be regarded as the next-leading order of the hadronic loop mechanism, which only offers the partial decay width of ~ 0.045 keV to the $ \psi$ (2S) $ \rightarrow$ $ \gamma$ $ \eta_{c}^{}$ .  相似文献   

17.
Experimental data on laser ablation of highly oriented pyrolitic graphite by nanosecond pulsed UV ( $\lambda =193$  nm) and green ( $\lambda =532$  nm) lasers are presented. It was found that below graphite vaporization threshold $\approx $ 1 J/cm $^{2}$ , the nanoablation regime can be realized with material removal rates as low as 10 $^{-3}$  nm/pulse. The difference between physical (vaporization) and physical–chemical (heating + oxidation) ablation regimes is discussed. Special attention is paid to the influence of laser fluence and pulse number on ablation kinetics. Possibility of laser-induced graphite surface nanostructuring has been demonstrated. Combination of tightly focused laser beam and sharp tip of scanning probe microscope was applied to improve material nanoablation.  相似文献   

18.
Isospin violating hadronic decays of the $ \eta$ and $ \eta{^\prime}$ mesons into 3 $ \pi$ mesons are driven by a term in the QCD Lagrangian proportional to the mass difference of the d and u quarks. The source giving large yield of the mesons for such decay studies are pp interactions close to the respective kinematical thresholds. The most important physics background for $ \eta$ , $ \eta{^\prime}$ $ \rightarrow$ $ \pi$ $ \pi$ $ \pi$ is coming from direct three-pion production reactions. In case of the $ \eta$ meson the background for the decays is relatively low ( $ \approx$ 10% . The purpose of this article is to provide an estimate of the direct pion production background for the $ \eta{^\prime}$ $ \rightarrow$ 3 $ \pi$ decays. Using the inclusive data from the COSY-11 experiment we have extracted the differential cross-section for the pp $ \rightarrow$ pp -multipion production reactions with the invariant mass of the pions equal to the $ \eta{^\prime}$ meson mass and estimated an upper limit for the signal to background ratio for studies of the $ \eta{^\prime}$ $ \rightarrow$ $ \pi^{+}_{}$ $ \pi^{-}_{}$ $ \pi^{0}_{}$ decay.  相似文献   

19.
In this article, we study the vertexes $ \Xi_{Q}^{*}$ Q V and $ \Sigma_{Q}^{*}$ $ \Sigma_{Q}^{}$ V with the light-cone QCD sum rules, then assume the vector meson dominance of the intermediate $ \phi$ (1020) , $ \rho$ (770) and $ \omega$ (782) , and calculate the radiative decays $ \Xi_{Q}^{*}$ $ \rightarrow$ Q $ \gamma$ and $ \Sigma_{Q}^{*}$ $ \rightarrow$ $ \Sigma_{Q}^{}$ $ \gamma$ .  相似文献   

20.
Consider an FPU chain composed of $N\gg 1$ particles, and endow the phase space with the Gibbs measure corresponding to a small temperature $\beta ^{-1}$ . Given a fixed $K$ , we construct $K$ packets of normal modes whose energies are adiabatic invariants (i.e., are approximately constant for times of order $\beta ^{1-a}$ , $a>0$ ) for initial data in a set of large measure. Furthermore, the time autocorrelation function of the energy of each packet does not decay significantly for times of order $\beta $ . The restrictions on the shape of the packets are very mild. All estimates are uniform in the number $N$ of particles and thus hold in the thermodynamic limit $N\rightarrow \infty $ , $\beta >0$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号