首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tandon RK  Crisp PT  Ellis J  Baker RS 《Talanta》1984,31(3):227-228
Published values of equilibrium constants were used to calculate the percentage of each chromium(VI) species (CrO(4)(2-), Cr(2)O(7)(2-), HCrO(4)(-) and H(2)CrO(4)) present in aqueous solution at total chromium(VI) concentrations of 10(-2)-10(-6)M in the pH range 1-8.  相似文献   

2.
Shen-Yang T  Ke-An L 《Talanta》1986,33(9):775-777
The distribution of the chromium(VI) species CrO(2-)(4), Cr(2)O(2-)(7), HCrO(-)(4), and H(2)CrO(4) in aqueous solutions with total chromium(VI) concentrations of 10(-2)-10(-6)M at pH 1-8 have been calculated.  相似文献   

3.
A method is introduced for recuperation of chromium(VI) in water samples by liquid-liquid extraction with tributylphosphate PO(C4H9O)3 (TBP) from acidic chloride media. The optimum conditions for quantitative extraction of Cr(VI) were evaluated by varying the experimental parameters, such as the shaking period, the pH of the aqueous phase, the hydrochloric acid concentration, the hydrogen and chloride ion concentrations, the extractant concentration and the ratio of aqueous-to-organic phase. The probable extracted species of hexavalent chromium in organic phase, deduced from log-log plots, were H2CrO4 in acid media in absence of chloride and HCrO3Cl in acidic chloride media. Chromium(VI) was found to be extracted with tributylphosphate from acidic chloride media according to the following reaction: HCrO4-(aq), + 2H+(aq) + Cl-(aq) + 2TBP(org) <==> [HCrO3Cl, 2TBP](org) + H2O(aq). Since the tributylphosphate (TBP) exhibited a high selectivity for chromium(VI), this method can be applicable to the extraction and the determination of chromium in both oxidation states [Cr(VI) and Cr(III)] in water samples.  相似文献   

4.
The identities of the species of chromium(VI) that are present in aqueous solution, their spectra and their equilibria, continue to be a subject of discussion in the literature. In this paper, the composition of the Cr(VI) equilibria was estimated from the UV-vis spectra of dilute potassium dichromate solutions, without any prior knowledge of the quantities of pure components, with the aid of Imbrie Q-mode factor analysis (Q-mode FA) followed by Varimax rotation and Imbrie oblique projection. Combining these results with the k-matrix method, it was possible to obtain the spectra of the individual Cr(VI) species. Sets of 3.3x10(-4) and 3.3x10(-5) mol l(-1) Cr(VI) solutions were studied. In the pH range from 1 to 12, two factors were identified, which were related to the two species, chromate ion (CrO(4)(2-)) and bichromate ion (HCrO(4)(-)). When the analysis was extended to concentrated acid media, another factor appeared, which was related to chromic acid (H(2)CrO(4)). No evidence for the dichromate ion (Cr(2)O(7)(2-)) was seen at the Cr(VI) concentrations used. The spectra of the pure components were obtained and pK values for the first and second chromic acid dissociations were estimated as -0.54 and 5.8, respectively.  相似文献   

5.
Akama Y  Sali A 《Talanta》2002,57(4):681-686
An aqueous two-phase system of tetrabutylammonium bromide (TBAB) and (NH(4))(2)SO(4) mixture has been developed for the extractive preconcentration and separation of certain compounds. TBAB concentration in upper phase is much higher than that of bottom solution. This new aqueous two-phase system is proposed for the highly selective extraction of Cr(VI) from large amounts of Cr(3+). The Cr(VI) is found to be extracted into the TBAB-rich upper phase due to ion pair formation such as HCrO(4)(-) . TBAB(+). The Cr(VI) was sufficiently extracted into the upper phase in the pH range from 1 to 5. The proposed method has been applied to the determination of trace of Cr(VI) in wastewater samples with a coefficient of variation less than 3.2%. The recovery obtained was not lower than 90%. The determination limit for the Cr(VI) was found to be 60 mug l(-1) in 10 ml of sample solution.  相似文献   

6.
Cresser MS  Hargitt R 《Talanta》1976,23(2):153-154
Chromium atomic absorption for Cr(VI) solutions in the air-acetylene and air-hydrogen flames is pH-dependent, but not in the nitrous oxide-acetylene flame. The effect is shown to occur as a result of the HCrO(-)(4) chemical equilibrium CrO(2-)(4) equilibrium, and may cause significant errors in the determination of chromium by atomic-absorption Spectrometry unless the pH of sample and standard solutions is controlled.  相似文献   

7.
The extraction of chromium(VI) from aqueous hydrochloric, nitric and sulfuric acid solutions by diphenyl-2-pyridylmethane(DPPM) dissolved in chloroform has been studied. Chromium(VI) is quantitatively extracted from hydrochloric acid solutions in the range 0.1–1M. With increasing acid concentration, the extraction of chromium diminishes and in concentrated acid solutions practically all the chromium remains in the aqueous phase. The quantitative back-extraction of chromium from the organic phase is possible with HCl or HNO3 at concentrations higher than 5M through the use of reducing agents. The composition of the extracted chromium(VI) species was studied in solution. The complexes (DPPMH)+HCrO 4 and (DPPMH)2Cr2O 7 are extracted for tracer and macro amounts of chromium(VI) respectively. The data have been utilized for the separation of chromium(VI) from base metal ions.  相似文献   

8.
The interactions of CrO(4) (2-) and Cr(3+) with nucleosides studied by electrospray ionization mass spectrometry (ESI-MS) are reported. In water, the nucleosides which do not contain the NH(2) group form the unstable [M+HCrO(4)](-) anion. In the presence of a reducing agent, namely methanol, chromate anion forms stable complexes with nucleosides, [M+CH(3)CrO(4)](-) anions. The fragmentation of [M+CH(3)CrO(4)](-) anions involve elimination of the methanol molecule. Chromium cation-nucleoside complexes were not observed in water. In methanol solutions, adenosine and cytidine form [(M-H)+CrOCH(3)](+) and [(M-H)(2)+Cr](+) ions. Most probably, deprotonated imine tautomers form complexes in which a metal cation is simultaneously coordinated by two nitrogen atoms. Complexes containing chloride anions and a few methanol molecules were observed for other nucleosides. Guanosine and inosine form doubly charged ions of the type [M(2)+CrOCH(3)](2+) that probably contain a bond between the oxygen atom and the chromium cation, (HN(1)--C(6)==O)(2) (....)Cr(3+)).  相似文献   

9.
Lam WW  Lee MF  Lau TC 《Inorganic chemistry》2006,45(1):315-321
The kinetics of the oxidation of hydroquinone (H(2)Q) and its derivatives (H(2)Q-X) by trans-[Ru(VI)(tmc)(O)(2)](2+) (tmc = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) have been studied in aqueous acidic solutions and in acetonitrile. In H(2)O, the oxidation of H(2)Q has the following stoichiometry: trans-[Ru(VI)(tmc)(O)(2)](2+) + H(2)Q --> trans-[Ru(IV)(tmc)(O)(OH(2))](2+) + Q. The reaction is first order in both Ru(VI) and H(2)Q, and parallel pathways involving the oxidation of H(2)Q and HQ(-) are involved. The kinetic isotope effects are k(H(2)O)/k(D(2)O) = 4.9 and 1.2 at pH = 1.79 and 4.60, respectively. In CH(3)CN, the reaction occurs in two steps, the reduction of trans-[Ru(VI)(tmc)(O)(2)](2+) by 1 equiv of H(2)Q to trans-[Ru(IV)(tmc)(O)(CH(3)CN)](2+), followed by further reduction by another 1 equiv of H(2)Q to trans-[Ru(II)(tmc)(CH(3)CN)(2)](2+). Linear correlations between log(rate constant) at 298.0 K and the O-H bond dissociation energy of H(2)Q-X were obtained for reactions in both H(2)O and CH(3)CN, consistent with a H-atom transfer (HAT) mechanism. Plots of log(rate constant) against log(equilibrium constant) were also linear for these HAT reactions.  相似文献   

10.
Reaction of Na(2)Mo(VI)O(4) x 2H(2)O with (NH(4))(2)SO(3) in the mixed-solvent system H(2)O/CH(3)CN (pH = 5) resulted in the formation of the tetranuclear cluster (NH(4))(4)[Mo(4)(VI)SO(16)] x H(2)O (1), while the same reaction in acidic aqueous solution (pH = 5) yielded (NH(4))(4)[Mo(5)(VI)S(2)O(21)] x 3H(2)O (2). Compound {(H(2)bipy)(2)[Mo(5)(VI)S(2)O(21)] x H(2)O}(x) (3) was obtained from the reaction of aqueous acidic solution of Na(2)Mo(VI)O(4) x 2H(2)O with (NH(4))(2)SO(3) (pH = 2.5) and 4,4'-bipyridine (4,4'-bipy). The mixed metal/sulfite species (NH(4))(7)[Co(III)(Mo(2)(V)O(4))(NH(3))(SO(3))(6)] x 4H(2)O (4) was synthesized by reacting Na(2)Mo(VI)O(4) x 2H(2)O with CoCl(2) x 6H(2)O and (NH(4))(2)SO(3) with precise control of pH (5.3) through a redox reaction. The X-ray crystal structures of compounds 1, 2, and 4 were determined. The structure of compound 1 consists of a ring of four alternately face- and edge-sharing Mo(VI)O(6) octahedra capped by the trigonal pyramidal sulfite anion, while at the base of the Mo(4) ring is an oxo group which is asymmetrically shared by all four molybdenum atoms. Compound 3 is based on the Strandberg-type heteropolyion [Mo(5)(VI)S(2)O(21)](4-), and these coordinatively saturated clusters are joined by diprotonated 4,4'-H(2)bipy(2+) through strong hydrogen bonds. Compound 3 crystallizes in the chiral space group C2. The structure of compound 4 consists of a novel trinuclear [Co(III)Mo(2)(V)SO(3)(2-)] cluster. The chiral compound 3 exhibits nonlinear optical (NLO) and photoluminescence properties. The assignment of the sulfite bands in the IR spectrum of 4 has been carried out by density functional calculations. The cobalt in 4 is a d(6) octahedral low-spin metal atom as it was evidenced by magnetic susceptibility measurements, cw EPR, BVS, and DFT calculations. The IR and solid-state UV-vis spectra as well as the thermogravimetric analyses of compounds 1-4 are also reported.  相似文献   

11.
Bismuth(III) compounds containing the Kl?ui's oxygen tripodal ligand [CpCo{P(O)(OEt)(2)}(3)](-) (L(OEt)(-)) have been synthesized, and their interactions with dichromate in aqueous media were studied. The treatment of Bi(5)O(OH)(9)(NO(3))(4) with NaL(OEt) in water afforded [L(OEt)Bi(NO(3))(2)](2) (1), whereas that of BiCl(3) with NaL(OEt) in CH(2)Cl(2) yielded L(OEt)BiCl(2) (2). Chloride abstraction of 2 with AgX afforded [L(OEt)BiX(2)](2) [X(-) = triflate (OTf(-)) (3), tosylate (OTs(-)) (4)]. In aqueous solutions at pH > 4, 4 underwent ligand redistribution to give the bis(tripod) complex [(L(OEt))(2)Bi(H(2)O)][OTs] (5). The treatment of 4 with Na(2)Cr(2)O(7) in acetone/water afforded the Bi(III)/Cr(VI) oxo cluster [(L(OEt))(4)Bi(4)(μ(3)-CrO(4))(2)(μ(3)-Cr(2)O(7))(2)] (6) containing a unique Bi(4)Cr(4)O(12) oxometallic core. Compound 6 oxidized benzyl alcohol to give ca. 6 equiv of benzaldehyde. The reaction between 2 and CrO(3) yielded [L(OEt)Bi(OCrO(2)Cl)](2)(μ-Cl)(2) (7). The crystal structures of complexes 4-7 have been determined.  相似文献   

12.
Chromium(VI) complexes of the most abundant biological reductant, glutathione (gamma-Glu-Cys-Gly, I), are among the likely initial reactive intermediates formed during the cellular metabolism of carcinogenic and genotoxic Cr(VI). Detailed structural characterization of such complexes in solutions has been performed by a combination of X-ray absorption fine structure (XAFS) and X-ray absorption near-edge structure (XANES) spectroscopies, electrospray mass spectrometry (ESMS), UV-vis spectroscopy, and kinetic studies. The Cr(VI) complexes of two model thiols, N-acetyl-2-mercaptoethylamine (II) and 4-bromobenzenethiol (III), were used for comparison. The Cr(VI)-thiolato complexes were generated quantitatively in weakly acidic aqueous solutions (for I and II) or in DMF solutions (for II) or isolated as a pure solid (for III). Contrary to some claims in the literature, no evidence was found for the formation of relatively stable Cr(IV) intermediates during the reactions of Cr(VI) with I in acidic aqueous solutions. The Cr(VI) complexes of I-III exist as tetrahedral [CrO(3)(SR)](-) (IVa) species in the solid state, in solutions of aprotic solvents such as DMF, or in the gas phase (under ESMS conditions). In aqueous or alcohol solutions, reversible addition of a solvent molecule occurs, with the formation of five-coordinate species, [CrO(3)(SR)L](-) (IVb, probably of a trigonal bipyramidal structure, L = H(2)O or MeOH), with a Cr-L bond length of 1.97(1) A (determined by XAFS data modeling). Complex IVb (L = H(2)O) is also formed (in an equilibrium mixture with [CrO(4)](2)(-)) at the first stage of reduction of Cr(VI) by I in neutral aqueous solutions (as shown by global kinetic analysis of time-dependent UV-vis spectra). This is the first observation of a reversible ligand addition reaction in Cr(VI) complexes. The formation of IVb (rather than IVa, as thought before) during the reactions of Cr(VI) with I in aqueous solutions is likely to be important for the reactivity of Cr(VI) in cellular media, including DNA and protein damage and inhibition of protein tyrosine phosphatases.  相似文献   

13.
Reactions of dioxoruthenium(VI) porphyrins, [Ru(VI)O2(Por)], with p-chloroaniline, trimethylamine, tert-butylamine, p-nitroaniline, and diphenylamine afforded bis(amine)ruthenium(II) porphyrins, [Ru(II)(Por)(L)2] (L-p-ClC6H4NH2, Me3N, Por=TTP, 4-Cl-TPP; L=tBuNH2, Por = TPP, 3,4,5-MeO-TPP, TTP, 4-Cl-TPP, 3,5-Cl-TPP) and bis(amido)ruthenium(IV) porphyrins, [Ru(IV)(Por)(X)2] (X=p-NO2C6H4NH, Por=TTP, 4-Cl-TPP; X = Ph2N, Por = 3,4,5-MeO-TPP, 3,5-Cl-TPP), respectively. Oxidative deprotonation of [Ru(II)(Por)(NH2-p-C6H4Cl)2] in chloroform by air generated bis(arylamido)ruthenium(IV) porphyrins, [RuIV(Por)(NH-p-C6H4Cl)2] (Por=TTP. 4-Cl-TPP). Oxidation of [RuII(Por)-(NH2tBu)2] by bromine in dichloromethane in the presence of tert-butylamine and traces of water produced oxo(imido)ruthenium(VI) porphyrins, [RuVI-O(Por)(NtBu)] (Por=TPP, 3,4,5-MeO-TPP, TTP, 4-Cl-TPP, 3,5-Cl-TPP). These new classes of ruthenium complexes were characterized by 1H NMR, IR, and UV/visible spectroscopy, mass spectrometry, and elemental analysis. The structure of [Ru(IV)(TTP)(NH-p-C6H4Cl)2 . CH2Cl2 was determined by X-ray crystallography. The Ru-N bond length and the Ru-N-C angle of the Ru-NHAr moiety are 1.956(7) A and 135.8(6) degrees, respectively.  相似文献   

14.
Wong YL  Ng DK  Lee HK 《Inorganic chemistry》2002,41(20):5276-5285
A new series of cis-dioxomolybdenum(VI) complexes MoO(2)(L(n))Cl (n = 1-5) were prepared by the reaction of MoO(2)Cl(2)(DME) (DME = 1,2-dimethoxyethane) with 2-N-(2-pyridylmethyl)aminophenol (HL(1)) or its N-alkyl derivatives (HL(n)) (n = 2-5) in the presence of triethylamine. The new mu-oxo dimolybdenum compounds [MoO(2)(L(n))](2)O (n = 1, 4, 5, 7) were also prepared by treating the corresponding ligand HL(n) with MoO(2)(acac)(2) (acac = acetylacetonate) in warm methanolic solutions or (NH(4))(6)[Mo(7)O(24)].4H(2)O in the presence of dilute HCl. Treatment of MoO(2)(L(1))Cl or [MoO(2)(L(1))](2)O with the Grignard reagent Me(3)SiCH(2)MgCl gave the alkyl compound MoO(2)(L(1))(CH(2)SiMe(3)), which represents the first example of dioxomolybdenum(VI) alkyl complex supported by a N(2)O-type ancillary ligand. The analogous chloro and mu-oxo tungsten derivatives WO(2)(L(n))Cl (n = 6, 7) and [WO(2)(L(n))](2)O (n = 1, 4, 6, 7) were prepared by the reaction of WO(2)Cl(2)(DME) with HL(n) in the presence of triethylamine. Similar to their molybdenum analogues, the tungsten alkyl complexes WO(2)(L(n))(R) (n = 6, 7; R = Me, Et, CH(2)SiMe(3), C(6)H(4)(t)Bu-4) were synthesized by treating WO(2)(L(n))Cl or [WO(2)(L(n))](2)O (n = 6, 7) with the appropriate Grignard reagents. The catalytic properties of selected dioxo-Mo(VI) and -W(VI) chloro and mu-oxo complexes toward epoxidation of styrene by tert-butyl hydroperoxide (TBHP) were also investigated.  相似文献   

15.
A multicomponent synthetic strategy involving copper(II) ions, tert-butylphosphonic acid (t-BuPO(3)H(2)) and 3-substituted pyrazole ligands has been adopted for the synthesis of soluble molecular copper(II) phosphonates. The use of six different 3-substituted pyrazoles, 3-R-PzH [R = H, Me, CF(3), Ph, 2-pyridyl (2-Py), and 2-methoxyphenyl (2-MeO-C(6)H(4))] as ancillary ligands afforded nine different decanuclear cages, [Cu(5)(μ(3)-OH)(2)(O(3)P-t-Bu)(3)(3-R-Pz)(2)(X)(2)](2)·(Y) where R = H, X = t-BuPO(3)H, and Y = (Et(3)NH(+))(4)(solvent) (1); R = Me, X = 3-MePzH, and Y = solvent (2); R = Me, X = t-BuPO(3)H, and Y = (Et(3)NH(+))(4)(solvent) (3); R = CF(3), X = t-BuPO(3)H, and Y = (Et(3)NH(+))(4)(solvent) (4); R = Ph, X = 3-PhPzH, and Y = solvent (5); R = 2-Py, X = 0.5 MeOH, and Y = solvent (6); R = 2-Py, X = none, and Y = solvent (7); R = 2-Py, X = H(2)O, and Y = (Et(3)NH(+)·PF(6)(-))(2)(solvent) (8); R = 2-MeO-C(6)H(4), X = MeOH or 0.5:0.5 MeOH/H(2)O, and Y = solvent (9). Compounds 1-6, 8, and 9 were isolated using a direct synthetic method which involves the reaction of copper(II) salts and the ligands, while 7 was obtained from an indirect route involving the reaction of preformed copper-pyridylpyrazolate precursor complexes and t-BuPO(3)H(2). The decametallic compounds 1-9 possess a butterfly shaped core. The core of the cages 1, 3, and 4 are tetraanionic and contain more phosphonates than pyrazole ligands, while the other cages are neutral and contain more pyrazoles than phosphonate ligands. Compounds 1-6 have been studied by electrospray ionization-high-resolution mass spectrometry (ESI-HRMS). The decanuclear cage 6 was shown to be a good plasmid modifier.  相似文献   

16.
The effect of phenols on the ion-pair extraction of chromium(VI) as chromate anion (HCrO 4 ) with tetraphenylarsonium cation (TPA+) has been investigated. By using TPACl, chromate is extracted as an ion-pair, TPA+·HCrO 4 , into organic solvents, but its extractability into nonpolar solvents such as carbon tetrachloride is very low. The addition of several phenols greatly enhances the extractability, e.g., the distribution ratio of chromium(VI) between carbon tetrachloride and water rises 5500-fold in the presence of 0.020M 3,5-dichlorophenol in the organic phase. The enhancement was larger when using more acidic phenols and less polar solvents. From the analysis of the extraction data for the 3,5-dichlorophenol-carbon tetrachloride system, it was shown that one molecule of chromate is extracted together with one TPA+ and 1–3 phenol molecules and the extraction constants were determined. The UV spectrum indicated the extracted species including chromate ester to the TPA+·ArOCrO 3 ·mArOH (m=1,2).  相似文献   

17.
The extraction behaviour of trace and macroamounts of chromium(VI) from different mineral acid solutions by 2-hexylpyridine in chloroform has been investigated. In the chloride system, the extracted species is apparently (HPyH+)2 (Cr2O7)2− or HPy+(HCrO 4 ) for macro and trace amounts of chromium(VI), respectively. Among the common anions chloride and sulphate have little effect on extraction up to 1M concentration, while in the case of nitrate there is a continuous decrease in the extraction with the increase of salt concentration in the aqueous phase. The effect of ascorbate, acetate, citrate, oxalate, thiosulphate, thiocyanate ions on the extraction from 1M HCl was also examined. Separation factors of several elements relative to chromium(VI) have been described and the separation of chromium(IV) from a large number of elements has been achieved.  相似文献   

18.
The sorption of chromium(III) and chromium(VI) on lead sulfide has been investigated in dependence on pH, time of sorption and the concentrations of sorbate and sorbent. The mechanisms of the sorption of Cr3+ and CrO 4 2– traces on lead sulfide are discussed; a difference between CrO 4 2– sorption on PbS and -Fe2O3 has been found. Sulfates and molybdates affect the removal of chromates from aqueous solutions. Lead sulfide carrier prepared in this work was also used for the preconcentration of chromium(III) and chromium(VI) from tap water.  相似文献   

19.
Dibenzyldithiocarbamic acid (DBDC) exhibits the ability to speciate between chromium(VI) and chromium(III), since only the chromium(VI) will form complexes with DBDC. The complex is then extracted into an organic solvent and assayed using an ultraviolet-visible (UV-VIS) spectrophotometer at 498.8 nm. Using 250 ml of aqueous sample detection limits less than 1 ng/ml are possible, while the linear range extends to 500 gmg/ml when working at 498.8 nm. Oxidation of the chromium(III) to chromium (VI) using cerium (IV) enables the determination of total chromium and subsequently the chromium (III) in solution. Evaluation of the method with a standard reference material produced only 4.81 part per thousand error in the determination of chromium(VI).  相似文献   

20.
Zhou ZH  Deng YF  Cao ZX  Zhang RH  Chow YL 《Inorganic chemistry》2005,44(20):6912-6914
A novel dimeric dioxomolybdenum(VI) citrate complex, K[(MoO2)2-(OH)(H2cit)2].4H2O (1), with weak coordination of beta-carboxylic acid groups and the first structural example of an oxomolybdenum(V) citrate complex, (NH4)6[Mo2O4(cit)2].3H2O (2) (H4cit = citric acid), are isolated in a very acidic solution (pH 0.5-1.0) and neutral conditions (pH 7.0-8.0), respectively. Complex 1 displays strong double hydrogen bonds through beta-carboxyl and beta-carboxylic acid groups [2.621(9) A]. Transformations of the dimeric molybdenum(VI) citrate show that protonation of a carboxyl group will weaken the coordination of molybdenum(VI) citrate. There are obvious dissociations of molybdenum(VI/V) citrate complexes based on 13C NMR observations in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号