首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
A novel macroporous silica-based chelating polymeric composite, DtDo/SiO2-P, was synthesized by molecular modification of 4,4′,(5′)-di-(tert-butylcyclohexano)-18-crown-6 (DtBuCH18C6) with a long carbon chain organic compound 1-dodecanol. It was performed through impregnation and immobilization of DtBuCH18C6 and 1-dodecanol molecules into the pores of the SiO2-P particles. The adsorption of a few fission and non-fission product elements Sr(II), Ba(II), Cs(I), Ru(III), Mo(VI), Na(I), K(I), Pd(II), La(III), and Y(III) onto DtDo/SiO2-P was investigated at 323 K. The effects of contact time and the HNO3 concentration in a range of 0.1-4.0 M were investigated. It was found that at the optimum concentration of 2.0 M HNO3, DtDo/SiO2-P exhibited strong adsorption ability and excellent selectivity for Sr(II) over all of the tested elements, which showed very weak or almost no adsorption except Ba(II). The bleeding of total organic carbon (TOC) from DtDo/SiO2-P was evaluated. The quantity of TOC in aqueous phase increased with an increase in HNO3 concentration in terms of a linear equation [TOC] = 35.82[HNO3] + 115.5 with a correlation coefficient of 0.9751. The TOC content leaked from DtDo/SiO2-P modified by 1-dodecanol, 119.0-269.3 ppm, in the range of 1.0-4.0 M HNO3 was significantly lower than that of 424.8-634.6 ppm in the case without modification. It resulted from the intermolecular interaction force of DtBuCH18C6 and 1-dodecanol through hydrogen bonding. The reduction of DtBuCH18C6 leakage by molecular modification was achieved. It is of great benefit to application of DtDo/SiO2-P in partitioning of Sr(II), one of the main heat generators, from high level liquid waste (HLLW) in reprocessing process of nuclear spent fuel in MAREC (Minor Actinides Recovery from HLLW by Extraction Chromatography) process developed.  相似文献   

2.
To separate Sr(II), one of the heat emitting nuclides, from high level liquid waste (HLLW), a macroporous silica-based DtBuCH18C6 polymeric composite, DtOct/SiO2-P, was synthesized by means of molecular modification of 4,4′,(5′)-di(tert-butylcyclohexano)-18-crown-6 (DtBuC H18C6) with a long-chain 1-octanol. It was performed by impregnating and immobilizing DtBuCH18C6 and 1-octanol molecules into the pores of the SiO2-P particles, the macroporous silica-based support. The adsorption of Sr(II) and some co-existent typical elements Na(I), K(I), Cs(I), Ru(III), Mo(VI), Pd(II), Ba(II), La(III), and Y(III) contained in highly active liquid waste (HLW) towards DtOct/SiO2-P was investigated at 323 K. The effects of contact time and the concentration of HNO3 in a range of 0.1–5.0M on the adsorption of the tested metals were examined. The macroporous silica-based DtOct/SiO2-P polymeric composite showed strong adsorption ability and high selectivity for Sr(II) over all of the tested metals except Ba(II). The optimum acidity of Sr(II) adsorption onto DtOct/SiO2-P was determined to be 2.0M HNO3. The bleeding behavior of DtOct/SiO2-P in aqueous phase was evaluated using total organic carbon (TOC) analysis. The content of TOC increased with increasing the HNO3 concentration and contact time. It resulted from the decrease in the stability of the associated species, C8H17-OH• DtBuCH18C6 formed through hydrogen binding, because of high temperature.  相似文献   

3.
Summary The Minor Actinides Recovery from HLW by Extraction Chromatography (MAREC) process was used mainly for the separation of minor actinides (MAs) and some specific fission products (FPs) from highly active liquid waste (HLW) by the composite CMPO/SiO2-P of the macroporous silica based polymeric octyl(phenyl)-N,N-diisobutylcarbamoylmethylphoshine oxide (CMPO) and others. In this study a cascade of chromatographic separation was performed on a 3.0M HNO3 solution containing 5.0 . 10-3M of 13 elements, at 323 K. The cascade consisted of three columns the first and second ones were packed with CMPO/SiO2-P and the third with SiO2-P particles. The first column was employed to prepare various eluents containing saturated CMPO. The second column was used for separation into groups. The CMPO of CMPO/SiO2-P was recovered from the effluent by the third column and a CMPO-free effluent containing minor actinides was obtained. The elements contained in the simulated HLW of 3.0M HNO3 were separated into (1) a non-adsorption group (Sr, Cs, and Ru etc.), (2) a MA-hRE (heavy rare earth)-Mo-Zr group, and (3) a lRE (light rare earth) group by eluting with 3.0M HNO3, 0.05M DTPA (diethylenetriaminepentaacetic acid) (pH 2.0) and HNO3 (pH 3.5), respectively. The resultant MA-hRE-Mo-Zr mixture containing minor actinides was then separated into the groups (1) Pd-Ru, (2) MA-hRE, and (3) Mo-Zr by utilizing 3.0M HNO3, distilled water, and 0.05M DTPA (pH 2.0) as eluents. More than 92% of CMPO in the MA-hRE containing effluent was adsorbed by SiO2-P particles. The effectivity and technical feasibility of MAREC process were demonstrated.  相似文献   

4.
To separate the long-life and significant fission product elements from high level liquid waste (HLLW), a novel partitioning process for the treatment of HLLW has been studied experimentally based on column separation technique using macroporous silica-based adsorbents. This process consists of (1) Cs and Rb are removed by the first separation column packed with (calix[4] + dodecanol)/SiO2–P adsorbent; (2) Sr and Ba are eluted out by the second separation column packed with (DtBuCH18C6 + dodecanol)/SiO2–P adsorbent; (3) Pd is partitioned by the third separation column packed with MOTDGA–TOA/SiO2–P adsorbent; (4) Ru, Rh and Mo can be separated by the fourth separation column packed with TODGA/SiO2–P adsorbent; (5) Am is separated from RE by the fifth column is packed with isobutyl-BTP/SiO2–P adsorbent. The experimental results indicated that this partitioning process is essentially feasible.  相似文献   

5.
To separate minor actinides from high level liquid waste (HLLW) of PUREX reprocessing, a silica-based macroporous isobutyl-BTP/SiO2-P adsorbent was synthesized by impregnating isobutyl-BTP (2,6-di(5,6-diisobutyl-1,2,4-triazin-3-yl)pyridine) extractant into the macroporous SiO2-P support with a mean diameter of 60 μm. A partitioning process using extraction chromatography for the treatment of HLLW was designed consisting five separation columns. As a partly work focused on isobutyl-BTP/SiO2-P separation column, adsorption behavior of 241Am and trivalent rare earth (RE) from simulated HLLW onto silica-based isobutyl-BTP/SiO2-P adsorbent was investigated by batch method. Meanwhile, the chemical and radiolytic stabilities of isobutyl-BTP/SiO2-P adsorbent against 0.01 M HNO3 solution and γ-ray irradiation were studied. It was found that isobutyl-BTP/SiO2-P adsorbent exhibited good adsorption selectivity for 241Am over RE(III) in 0.01 M HNO3 solution and showed weak or no adsorption affinity to light and middle RE(III) groups. In addition, in stability experiments, isobutyl-BTP adsorbent showed excellent stability against 0.01 M HNO3 solution and γ-ray irradiation over 4 months contact time.  相似文献   

6.
A new type of silica-based chelating extraction resin, DtBuCH18C6/SiO2-P, was prepared by impregnating a crown ether derivative, 4,4¢,(5¢)-di(tert-butylcyclohexano)-18-crown-6 (DtBuCH18C6), into the porous silica/polymer composite particles (SiO2-P). The adsorption of Sr(II) and some other fission product elements was investigated by a batch adsorption experiment in HNO3 This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
A new type of silica-based chelating extraction resin, DtBuCH18C6/SiO2-P, was prepared by impregnating a crown ether derivative, 4,4,(5)-di(tert-butylcyclohexano)-18-crown-6 (DtBuCH18C6), into the porous silica/polymer composite particles (SiO2-P). The adsorption of Sr(II) and some other fission product elements was investigated by a batch adsorption experiment in HNO3 medium. It was found that Sr(II) exhibits a strong adsorption onto the extraction resin, while the other fission product elements show almost no or only weak adsorption. The adsorption kinetics of Sr(II) was explained by assuming as the rate-controlling step the complex-formation reaction between Sr(II) and DtBuCH18C6 contained in the extraction resin. The rate equation of Sr(II) adsorption was determined as:-d[Sr(II)]/dt = k[Sr(II)][DtBuCH18C6][NO3 ]0.5.  相似文献   

8.
A macroporous silica-based N,N,N′,N′-tetraoctyl-3-oxapentane-1,5-diamide (TODGA) polymeric composite (TODGA/SiO2-P) was synthesized. It was done through impregnation and immobilization of TODGA molecule into the pores of the SiO2-P particles utilizing a vacuum sucking technique. The macroporous SiO2-P particles were the silica-based organic/inorganic composite synthesized by immobilizing styrene-divinylbenzene copolymer inside SiO2 through the complicated polymerization reaction. The adsorption of rare earth (RE(III)) elements onto TODGA/SiO2-P was investigated in HNO3 solution containing diethylenetriaminepentaacetic acid (DTPA), an acidic multi-dentate chelating agent. It was found that in the presence of 0.05 M DTPA, and H+ had significant effect on the TODGA/SiO2-P adsorption due to the competition reactions of RE(III) with different species, H4DTPA and H2DTPA3−. With an increase in the concentration of from 0.115 M to 3.015 M, the adsorption of RE(III) onto TODGA/SiO2-P increased noticeably. On the other hand, RE(III) showed strong adsorption at 0.1 M H+, weak adsorption at around pH 2, and no adsorption in excess of pH 2.3. In a 0.1 M H+-0.115 M -0.05 M DTPA solution, a change of the distribution coefficient of RE(III) onto TODGA/SiO2-P with an increase in atomic number of RE(III) from La(III) to Lu(III) was investigated. The silica-based TODGA/SiO2-P polymeric composite showed strong adsorption for heavy RE(III) over the light one. In a 0.01 M H+-1.0 M -0.05 M DTPA solution, the effect of the ratio of solid phase to liquid one on the relationship of the distribution coefficient of RE(III) with the change in atomic number of RE(III) was also studied. Based on the complicated disassociation equilibrium of DTPA, the influence of the concentrations of and H+ on the adsorption of TODGA/SiO2-P for RE(III) was demonstrated. This makes the partitioning of RE(III) and MA(III) together from high level liquid waste (HLLW) by the polymeric composite TODGA/SiO2-P promising.  相似文献   

9.
To understand the separation behavior of Zr(IV) in the partitioning process for high level liquid waste, a silica-based macroporous adsorbent (TODGA/SiO2-P) was prepared by impregnating N,N,N′,N′-tetraoctyl-3-oxapentane-1,5-diamide (TODGA) into a macroporous silica/polymer composite particles support (SiO2-P). Adsorption and desorption behavior of Zr(IV) from nitric acid solution onto silica-based TODGA/SiO2-P adsorbent were investigated by batch experiment. It was found that TODGA/SiO2-P showed strong adsorption affinity to Zr(IV) and this adsorption process reached equilibrium state around 6 h at 298 K. Meanwhile, HNO3 concentration had no significant effect on the adsorption of Zr(IV) above 1 M. From calculated thermodynamic parameters, this adsorption process could occur spontaneously at the given temperature and was confirmed to be an exothermic reaction. This adsorption process could be expressed by Langmuir monomolecular layer adsorption mode and the maximum adsorption capacity were determined to be 0.283 and 0.512 mmol/g for Zr(IV) at 298 and 323 K, respectively. In addition, more than 90 % of Zr(IV) adsorbed onto adsorbent could be desorbed with 0.01 M diethylenetriamine pentaacetic acid solution within 24 h at 298 K.  相似文献   

10.
A porous Me2-CA-BTP/SiO2-P adsorbent was prepared to separate MA(III) from Ln(III) in high level liquid waste (HLLW). The adsorption behavior of Me2-CA-BTP/SiO2-P toward 241Am(III) and Ln(III) in 0.01 M HNO3-NaNO3 solution was studied. Me2-CA-BTP/SiO2-P showed high adsorption and selectivity toward 241Am(III) over Ln(III) fission products with the separation factor (SF) reaching to 557, 2355, 1952, 1082, 214, 105, 86, 14 for Y, La, Ce, Nd, Sm, Eu, Gd and Dy respectively in 0.01 M HNO3-0.99 M NaNO3 solution. The adsorption kinetics of both Dy(III) and Eu(III) on Me2-CA-BTP/SiO2-P was studied and followed pseudo-second-order rate equation indicating chemical sorption as the rate-limiting step of the adsorption, and the adsorption isotherm of Dy(III) and Eu(III) matched better with the Langmuir isotherm than the Freundlich isotherm with the adsorption amount around 0.22 and 0.20 mmol/g respectively. Thermodynamic study revealed that the adsorption of both Dy(III) and Eu(III) on Me2-CA-BTP/SiO2-P was spontaneous and endothermic processes with a positive entropy at 298, 308, 313 K.  相似文献   

11.
To partition Sr(II) from highly active liquid waste (HLW), a macroporous silica-based 4,4',(5')-di(t-butylcyclohexano)-18-crown-6 (DtBuCH18C6)-tri-n-butyl phosphate (TBP) polymeric composite, (DtBuCH18C6+TBP)/SiO(2)-P, was synthesized. It was done by impregnation and immobilization of DtBuCH18C6 and TBP into the pores of the SiO(2)-P particles, where DtBuCH18C6 was modified with TBP. The sorption of Sr(II) and some co-existent elements contained in a simulated HLW onto (DtBuCH18C6+TBP)/SiO(2)-P was investigated at 323 K. It was found that in 2.0 M HNO(3), Sr(II) exhibited strong sorption ability and high selectivity over all the tested metals except Ba(II). Chromatographic partitioning of Sr(II) from 2.0 M HNO(3) containing 5 mM of the tested elements was performed by (DtBuCH18C6+TBP)/SiO(2)-P packed column. La(III), Y(III), Na(I), K(I), Cs(I), Ru(III), Mo(VI), and Pd(II) had almost no sorption and flowed into effluent along with 2.0 M HNO(3). Sr(II) adsorbed strongly by (DtBuCH18C6+TBP)/SiO(2)-P was then eluted effectively by water, while Ba(II) flowed into effluent along with Sr(II) due to the similar chemical properties. In addition, the bleeding of total organic carbon in aqueous phase was evaluated. The results demonstrated that in 2.0 M HNO(3), application of the macroporous silica-based DtBuCH18C6 polymeric composite in chromatographic partitioning of Sr(II) from the simulated HLW is feasible.  相似文献   

12.
In order to develop a direct separation process for trivalent minor actinides from fission products in high level liquid waste (HLLW) by extraction chromatography, a novel macroporous silica-based 2,6-bis(5,6-diisohexyl)-1,2,4-triazin-3-yl)pyridine resin (isohexyl-BTP/SiO2-P resin) was prepared. The content of isohexyl-BTP extractant in the resin was as high as 33.3 wt%. The resin exhibited much higher adsorption affinity for Am(III) in 2–3 M (mol/L) HNO3 solution over U and FP which are contained in HLLW. The kinetic data were analyzed using pseudo-second-order equation. The results suggested that the Eu(III), Gd(III), and Dy(III) adsorption was well explained by the pseudo-second-order equation. Quantitative desorption for adsorbed elements was achieved by using H2O or thiourea as eluting agents. However, the kinetics of adsorption and desorption were rather slow and this drawback needs to be resolved. Stability of the resin against HNO3 was also examined. It was found that the resin was considerably stable against ≤4 M HNO3 solution for the reasons of an extremely small leakage of the extractant into the solution from the resin and the adsorption performance keeping for rare earths in 3 M HNO3 solution.  相似文献   

13.
Separation of trivalent minor actinides (MA(III): Am(III), Cm(III)) from fission products (FP) in high-level liquid waste (HLLW) is an important task in advanced nuclear-fuel reprocessing systems. For this purpose, an advanced aqueous partitioning process based on extraction chromatography method was studied. Because R-BTP extractants (R-BTP: 2,6-bis(5,6-dialkyl-1,2,4-triazin-3-yl)pyridine, R = alkyl group) exhibit high selectivity for MA(III) over trivalent rare-earth elements (RE(III)), a novel adsorbent isoHex-BTP/SiO2-P was prepared by impregnating isoHex-BTP extractant into the macroporous SiO2-P support with a mean diameter of 60 μm. The stability of isoHex-BTP/SiO2-P against nitric acid and γ-irradiation was investigated. It was found that isoHex-BTP/SiO2-P adsorbent shows good adsorption affinity to Dy(III). The hydrolytic and radiolytic stability of isoHex-BTP/SiO2-P adsorbent in 0.01 mol/L HNO3 was fairly promising. However, the adsorption amount Q of Dy(III) decreased dramatically in 3 mol/L HNO3 with the increase of the absorbed dose and became nearly zero at the absorbed dose over 46 kGy. These results suggest that with the synergetic effect of radiation and acidic hydrolysis, the adsorbent instantly loses its efficacy.  相似文献   

14.

N,N,N′,N′-tetraoctyl diglycolamide (TODGA) and bis(2-ethylhexy)phosphoric acid (HDEHP) were coated on Fe3O4 nanoparticles under different chemical conditions. The TODGA-coated magnetite nanoparticles (Fe3O4@TODGA) captured representative actinides Am(III) and Pu(IV) at 3–4 M HNO3 with high efficiency. However, the HNO3 induced pre-organization of TODGA, before coating on the magnetite nanoparticles, was found to be important for the sorption of Am(III) and Pu(IV) ions. The Fe3O4@HDEHP particles exhibited selectivity toward Pu(IV), and Am(III) did not sorb from 3 to 4 M HNO3. The quantification of Pu(IV) preconcentrated on coated particles was carried out by removing the extractant coating in dioxane based scintillator, followed by liquid scintillation counting.

  相似文献   

15.
Solid formation in a simulated high level liquid waste (HLLW) was experimentally examined at 2M and 0.5M nitric acid concentrations. The precipitation studies were conducted by refluxing the simulated HLLW around 100°C. Zr, Mo, Te and Ru were major precipitation elements in both 2M and 0.5M HNO3 solutions. The amount of precipitate in 2M HNO3 solution decreased with decreasing Zr concentration and no precipitation was found in the solution without Zr. Only about 10% of Zr, Mo and Te were precipitated, if the Mo/Zr ratio in the 0.5M HNO3 solution was kept below 0.5. Complete removal of Zr and Mo was the most effective way to prevent solid formation in the solution with 2M and 0.5M HNO3 concentrations.  相似文献   

16.
Two kinds of novel macroporous silica-based chelating polymeric adsorption materials, TODGA/SiO2-P and CMPO/SiO2-P, were synthesized by impregnating and immobilizing two chelating agents, N,N,N',N'-tetraoctyl-3-oxapentane-1,5-diamide (TODGA) and octyl(phenyl)-N,N-diisobutylcarbamoylmethylphoshine oxide (CMPO), into the pores of SiO2-P particles. To separate minor actinides (MA(III)) such as Am(III) and Cm(III), the adsorption and elution of 13 typically simulated fission products from a 3 M HNO3 were performed. It was found that in the first column packed with TODGA/SiO2-P, all of the simulated elements were separated effectively into four groups: (1) Cs(I), Mo(VI), and the most portion of Ru(III) (non-adsorption group), (2) Sr(II), small portion of Gd(III) and all of light REs(III) (MA-lRE-Sr group), (3) most of Gd(III) and all heavy RE(III) (hRE group), and (4) Zr(IV), Pd(II), and a little of Ru(III) (Zr-Pd group) by eluting with 3.0 M HNO3, 1.0M HNO3, distilled water, and 0.5 M H2C2O4, respectively, at 298 K. MA(III) was predicted to flow into the second group along with Nd(III) because of their close adsorption-elution onto TODGA/SiO2-P. In the second column packed with CMPO/SiO2-P, MA-lRE-Sr group was separated into (1) Sr(II), (2) middle RE(III) such as Gd(III), Eu(III), Sm(III), and quite small portion of Nd(III) (MA-mRE), and (3) light RE(III) such as La(III), Ce(III), and most of Nd(III) by eluting with 3.0 M HNO3 and 0.05 M DTPA-pH 2.0, respectively, at 323 K. MA(III) was believed to flow into MA-mRE group along with Gd(III) due to their similar adsorption properties towards CMPO/SiO2-P. Based on positions of MA(III) appeared in light and heavy RE(III), an improved MAREC process for MA(III) partitioning from HLW was proposed.  相似文献   

17.
A silica-based adsorbent, (DtBuCH18C6 + dodecanol)/SiO2-P, which is used for selective separation of Sr(II) from high level liquid wastes, against temperature and gama-irradiation was investigated. The adsorption characteristics of Sr(II), Ba(II), La(III), Nd(III), Gd(III) and Dy(III) under varying nitric acid concentration at different temperatures were measured by batch method. The adsorbent showed higher distribution coefficients (K d) for Sr(II) compared to other tested metal ions, and the K d values of Sr(II) decreased with increasing temperature. Thermodynamic parameters of the adsorption process were calculated. The related parameters in adsorption isotherm models were obtained using a non-linear fitting. Uptake capacity from 0.38 to 0.43 mmol g?1 was obtained for Sr(II) in the temperature range of 298–323 K by the Langmuir equation fitting. The leakage of total organic carbon was below 120 ppm at 298 K and 180 ppm at 323 K, respectively. The degradation of the adsorbent irradiated in 2 M HNO3 was investigated. It is found that the adsorbed dose of γ-ray more than 50 KGy has a strong influence on K d of Sr(II). The K d values of Sr(II) decrease about 3 times ranged from 50 to 500 KGy.  相似文献   

18.
A novel macroporous silica-based 2,6-bis(5,6-diisobutyl-1,2,4-triazine-3-yl)pyridine (iso-Bu-BTP), a neutral chelating agent having several softatom nitrogen, polymeric composite (iso-Bu-BTP/SiO2-P) was synthesized. It was done through impregnation and immobilization of iso-Bu-BTP molecule into the pores of SiO2-P particles with 40–60 μm of bead diameter and 0.6 μm of mean pore size. The effective impregnation resulted from the intermolecular interaction of iso-Bu-BTP and co-polymer inside the SiO2-P particles by a vacuum sucking technique. To understand the possibility of applying iso-Bu-BTP in the MAREC process developed, the adsorption behavior of a few representative rare earths (REs) such as Ce(III), Nd(III), Gd(III), Dy(III), Er(III), Yb(III), and Y(III) towards iso-Bu-BTP/SiO2-P was investigated at 298 K. The influence of the HNO3 concentration in a wide range of pH 5.52–3.0M and a few chelating agents such as formic acid, citric acid, and diethylenetriaminepentaacetic acid (DTPA) on the adsorption of RE(III) was examined. It was found that in the presence of chelating agent, the adsorption ability of the tested RE(III) towards iso-Bu-BTP/SiO2-P decreased due to two competition reactions of RE(III) with iso-Bu-BTP/SiO2-P and chelating agents. In a 0.01M HNO3 solution containing 1M formic acid or 1M citric acid, light RE(III) showed lower adsorption towards iso-Bu-BTP/SiO2-P than that of the heavy one. This makes the separation of light RE(III) from the heavy one possible. Based on the similarity of minor actinides and heavy RE(III) in chemical properties and the results of column separation experiments, chromatographic partitioning of light RE(III) from a simulated high level liquid waste solution composed of the heavy RE(III) and minor actinides in MAREC process is promising.  相似文献   

19.
The142/140Ce unit separation factors (q) for cerium(III)-cerium(IV) exchange reaction in an extraction system containing Ce(IV) in tri-n-butyl phosphate (TBP) or di(2-ethylhexyl) phosphoric acid (HDEHP) and Ce(III) in nitric acid were determined. The value of q was found to be 1.00054±0.00012 (2) in 6M HNO3/TBP and 1.00078±0.00028 in 6M HNO3/HDEHP extraction systems. The dehydration and complex formation processes and their contribution to reduced partition function ratios (RPFR's) are discussed.  相似文献   

20.
Solvent extraction and supported liquid membrane transport studies on Y(III) and Sr(II) were carried out using both nitric as well as hydrochloric acid feed conditions using N,N,N′,N′-tetra-octyldiglycolamide (TODGA) in several organic diluents. The solvent extraction studies indicated extremely large separation factor (SF) values with chloroform, carbon tetrachloride, 1-decanol and hexone when 6 M HNO3 was used as the feed. On the other hand, the SF values were 1–2 orders of magnitude lower when the nitric acid concentration was 3 M HNO3. Significantly large SF values were also obtained from 6 M HCl when xylene, carbon tetrachloride, n-dodecane and hexone were used as the diluent. Though mass transfer was not very promising in the supported liquid membrane studies with most of the diluent systems, quantitative Y(III) transport was observed with 0.1 M TODGA in xylene with negligible Sr(II) transport suggesting possibility of obtaining carrier free 90Y. The purity of the radiotracer was checked by half-life method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号