首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The structure of the title compound, C14H12ClNO3, (I), comprises essentially planar mol­ecules stacked parallel to the a axis. C—H?O hydrogen‐bonding interactions exist to both naphtho­quinone O atoms and the Cl atom, but not to the morpholine O atom.  相似文献   

2.
The title compound, C36H28O4P2·CH4O, was synthesized directly from the methoxy analogue. The crystal structure shows that one OH group interacts with an O atom of a phosphine oxide group in an adjacent mol­ecule, while the other OH group complexes with the methanol solvent molecule via intermolecular hydrogen bonds. An O atom of one phosphine oxide group interacts with the hydroxy H atom of methanol via a hydrogen bond. There are intra‐ and intermolecular π–π interactions between the phenyl rings. All these interactions result in the formation of supramolecular chiral parallelogram channels via self‐assembly.  相似文献   

3.
The title compounds, C11H11BrO3, (I), and C11H11NO5, (II), respectively, are derivatives of 6‐hydroxy‐5,7,8‐trimethylchroman‐2‐one substituted at the 5‐position by a Br atom in (I) and by a nitro group in (II). The pyranone rings in both molecules adopt half‐chair conformations, and intramolecular O—H...Br [in (I)] and O—H...Onitro [in (II)] hydrogen bonds affect the dispositions of the hydroxy groups. Classical intermolecular O—H...O hydrogen bonds are found in both molecules but play quite dissimilar roles in the crystal structures. In (I), O—H...O hydrogen bonds form zigzag C(9) chains of molecules along the a axis. Because of the tetragonal symmetry, similar chains also form along b. In (II), however, similar contacts involving an O atom of the nitro group form inversion dimers and generate R22(12) rings. These also result in a close intermolecular O...O contact of 2.686 (4) Å. For (I), four additional C—H...O hydrogen bonds combine with π–π stacking interactions between the benzene rings to build an extensive three‐dimensional network with molecules stacked along the c axis. The packing in (II) is much simpler and centres on the inversion dimers formed through O—H...O contacts. These dimers are stacked through additional C—H...O hydrogen bonds, and further weak C—H...O interactions generate a three‐dimensional network of dimer stacks.  相似文献   

4.
In the title compound, C18H13N5, the two pyridyl rings form dihedral angles of 32.7 (2) and 30.1 (2)° with the triazole ring. The most favoured orientation of the pyridyl rings is that with their N atoms on opposite sides of the triazole ring directed towards the phenyl ring. π–π‐Stacking interactions involving pyridyl rings are observed along the a axis at a perpendicular distance of 3.670 (3) Å. This arrangement is further stabilized by weak intermolecular C—H?N hydrogen bonds.  相似文献   

5.
In the title compound, C13H16O4, the cyclo­hexene rings adopt a sofa conformation. Adjacent mol­ecules are connected by C—H?O intermolecular interactions. Each mol­ecule is characterized by O—H?O intramolecular hydrogen bonds. The anti arrangement of the enolic OH group and the carbonyl O atom in the solid state is similar to the anti arrangement of the NH and carbonyl groups in indigo.  相似文献   

6.
In the title compound, [SbCl2(C4H8N2S)2]Cl, the coordination around the Sb atom can be described as distorted pseudo‐octahedral. Both rings of the tri­methyl­ene­thio­urea ligands [alternatively 3,4,5,6‐tetrahydropyrimidine‐2(1H)‐thione] adopt an envel­ope conformation. The mol­ecules are connected into dimers in the ab plane by two intermolecular hydrogen bonds. The dimers are arranged into infinite one‐dimensional chains along the a axis as a result of the Cl? ions forming intermolecular hydrogen bonds with three NH groups.  相似文献   

7.
The crystal structure of the title compound, C24H28O8, has been determined. The conformation of the furan­ose ring can be described as 58% ideal envelope OE conformer and 42% ideal twisted OT1 conformer. The 1,3‐dioxane ring adopts a chair conformation with the anhydro‐O atom pointing upwards. Both phenyl rings are quasi‐perpendicular to the mean plane of the furan­ose ring. The hydrogen bonding is intermolecular and consists of infinite chains parallel to the a axis.  相似文献   

8.
The title compound, {[CuCl2(PhTz)2]·0.5PhTz}n (PhTz is 1‐­phenyl­tetrazole, C7H6N4), has a polymeric structure, with uncoordinated disordered PhTz mol­ecules in the cavities. The coordination polyhedron of the Cu atom is a highly elongated octahedron. The equatorial positions are occupied by two Cl atoms [Cu—Cl = 2.2687 (9) and 2.2803 (7) Å] and two N atoms of the PhTz ligands [Cu—N = 2.0131 (19) and 2.0317 (18) Å]. The more distant axial positions are occupied by two Cl atoms [Cu—Cl = 3.0307 (12) and 2.8768 (11) Å] that lie in the equatorial planes of two neighbouring Cu octahedra. The [CuCl2(PhTz)2] units are linked by Cu—Cl bridges into infinite chains extending parallel to the a axis. The chains are linked into two‐dimensional networks by intermolecular C—H⋯N interactions between the phenyl and tetrazole fragments, and by face‐to‐face π–π interactions between symmetry‐related phenyl rings. These two‐dimensional networks, which lie parallel to the ac plane, are connected by intermolecular π–π stacking interactions between phenyl rings, thus forming a three‐dimensional network.  相似文献   

9.
The title compounds, C8H11NO, (I), and 2C8H12NO+·C4H4O42−, (II), both crystallize in the monoclinic space group P21/c. In the crystal structure of (I), intermolecular O—H...N hydrogen bonds combine the molecules into polymeric chains extending along the c axis. The chains are linked by C—H...π interactions between the methylene H atoms and the pyridine rings into polymeric layers parallel to the ac plane. In the crystal structure of (II), the succinate anion lies on an inversion centre. Its carboxylate groups interact with the 2‐ethyl‐3‐hydroxy‐6‐methylpyridinium cations via intermolecular N—H...O hydrogen bonds with the pyridine ring H atoms and O—H...O hydrogen bonds with the hydroxy H atoms to form polymeric chains, which extend along the [01] direction and comprise R44(18) hydrogen‐bonded ring motifs. These chains are linked to form a three‐dimensional network through nonclassical C—H...O hydrogen bonds between the pyridine ring H atoms and the hydroxy‐group O atoms of neighbouring cations. π–π interactions between the pyridine rings and C—H...π interactions between the methylene H atoms of the succinate anion and the pyridine rings are also present in this network.  相似文献   

10.
1,3‐Bis(ethylamino)‐2‐nitrobenzene, C10H15N3O2, (I), and 1,3‐bis(n‐octylamino)‐2‐nitrobenzene, C22H39N3O2, (II), are the first structurally characterized 1,3‐bis(n‐alkylamino)‐2‐nitrobenzenes. Both molecules are bisected though the nitro N atom and the 2‐C and 5‐C atoms of the ring by twofold rotation axes. Both display intramolecular N—H...O hydrogen bonds between the amine and nitro groups, but no intermolecular hydrogen bonding. The nearly planar molecules pack into flat layers ca 3.4 Å apart that interact by hydrophobic interactions involving the n‐alkyl groups rather than by π–π interactions between the rings. The intra‐ and intermolecular interactions in these molecules are of interest in understanding the physical properties of polymers made from them. Upon heating in the presence of anhydrous potassium carbonate in dimethylacetamide, (I) and (II) cyclize with formal loss of hydrogen peroxide to form substituted benzimidazoles. Thus, 4‐ethylamino‐2‐methyl‐1H‐benzimidazole, C10H13N3, (III), was obtained from (I) under these reaction conditions. Compound (III) contains two independent molecules with no imposed internal symmetry. The molecules are linked into chains via N—H...N hydrogen bonds involving the imidazole rings, while the ethylamino groups do not participate in any hydrogen bonding. This is the first reported structure of a benzimidazole derivative with 4‐amino and 2‐alkyl substituents.  相似文献   

11.
The crystal structures of 2‐oxo‐2‐phenyl‐N‐[(R)‐1‐phenylethyl]acetamide, C16H15NO2, (I), and N,N‐dimethyl‐2‐(1‐naphthyl)‐2‐oxoacetamide, C14H13NO2, (II), were determined in an attempt to understand the reason for the lack of Yang photocyclization in their respective crystals. In the case of (I), the long distance between the O atom of the carbonyl group and the γ‐H atom, and between the C atom of the carbonyl group and the γ‐C atom, preclude Yang photocyclization. For (II), the deviation of the γ‐H atom from the plane of the carbonyl group and interactions between the naphthalene rings are regarded as possible reasons for the chemical inertia. The two independent molecules of (I) differ in their conformation. N—H...O hydrogen bonds link molecules of (I) into chains extended along the b axis.  相似文献   

12.
The structures of the title compounds, C28H33N3O, (I), and C26H27NO3, (II), together with their two‐photon absorption properties and fluorescence activities are reported. Molecules of (II) reside on crystallographic mirror planes containing the piperidone C=O group and N‐methyl H atoms. Because of the conjugation between the donor and acceptor parts, the central heterocycle in both (I) and (II) exhibits a flattened boat conformation, with deviations of the N atom and the opposite C atom from the planar fragment. The dihedral angles between the coplanar heterocyclic atoms and terminal C6 rings are less than 20° in both (I) and (II). In (I), the N‐methyl group of the ring occupies an equatorial position, but in (II) it is positioned in an axial site. In the crystal structure of (I), weak intermolecular C—H...π(arene) and C—H...O steric contacts link the molecules along the a axis. In the crystal structure of (II), molecules form stacks along the b axis.  相似文献   

13.
The title compound, C8H13N5, is a novel functionally substituted 5‐alkyl­tetrazole. The substituent on the tetrazole C atom is symmetrical, with intrinsic symmetry close to m. There is intermolecular N—H⃛N hydrogen bonding between adjacent tetrazole rings, which is responsible for the formation of one‐dimensional polymeric chains running along the c axis. The polycrystalline compound exhibits frequency doubling for incident light (λ = 1064 nm) from a YAG:Nd pulsed laser.  相似文献   

14.
In the title compound, [Cu(C12H15N4S2)(C18H15P)], the copper(I) center is tetrahedrally coordinated by one S atom and two N atoms from one bis(3,5‐dimethylpyrazol‐1‐yl)dithioacetate ligand and one P atom from a triphenylphosphine ligand. In the crystal structure, adjacent pyrazole rings are involved in weak π–π interactions, thereby forming a one‐dimensional zigzag chain running along the b axis.  相似文献   

15.
The title compounds, 4‐(2‐naphthyl­oxy­methyl­carbonyl)­morpholine, C16H17NO3, (I), and 4‐methyl‐1‐(2‐naphthyl­oxy­methyl­carbonyl)­piper­azine, C17H20N2O2, (II), are potential antiamnesics. The morpholine ring in (I) and the piperazine ring in (II) adopt chair conformations. In (I), the mol­ecules are linked by weak intermolecular C—H⃛O interactions into chains that have a graph‐set motif of C(10), while in (II), the mol­ecules are linked by weak intermolecular C—H⃛O interactions that generate two C(7) graph‐set motifs. The dihedral angle between the naphthalene moiety and the best plane through the morpholine ring is 20.62 (4)° in (I), while the naphthalene moiety is oriented nearly perpendicular to the mean plane of the piperazine ring in (II).  相似文献   

16.
The title isomers, namely 3‐chloro‐N‐[1‐(1H‐pyrrol‐2‐yl)ethylidene]aniline, (I), and 4‐chloro‐N‐[1‐(1H‐pyrrol‐2‐yl)ethylidene]aniline, (II), both C12H11ClN2, differ in the position of the chlorine substitution. Both compounds have the basic iminopyrrole structure, which shows a planar backbone with similar features. The dihedral angle formed by the planes of the pyrrole and benzene rings is 75.65 (7)° for (I) and 86.56 (8)° for (II). The H atom bound to the pyrrole N atom is positionally disordered and partial protonation occurs at the imino N atom in (I), while this phenomenon is absent from the structure of (II). Packing interactions for both compounds include intermolecular N—H...N hydrogen bonds and C—H...π interactions, forming centrosymmetric dimers for both (I) and (II).  相似文献   

17.
In the synthesis of 1‐phenyl‐2‐phenyl­thio‐2‐(tetra­hydro­pyran‐2‐yl­thio)­ethanol, C19H22O2S2, four diastereoisomers are formed. Two non‐centrosymmetric enantiomeric forms which crystallize in space groups P212121 and Pna21 are presented. The former has an intramolecular hydrogen bond between the hydroxyl group and the O atom of the tetra­hydro­pyran ring. In the latter isomer, the hydroxyl group forms an intermolecular hydrogen bond to the O atom of the tetra­hydro­pyran­yl group of a neighbouring mol­ecule, joining the mol­ecules into chains in the c‐axis direction; the O?O distances are 2.962 (4) and 2.764 (3) Å, respectively. The tetra­hydro­pyran rings are in chair conformations in both isomers and the S side chain has an equatorial orientation in the former, but an axial orientation in the latter mol­ecule.  相似文献   

18.
In the title compound, C17H21NO3S, the S atom is in a distorted tetrahedral geometry and the N atom exhibits sp2 character. The antiperiplanar conformation is observed for the N and hydroxyl‐O atoms and the torsion angle around the N—C linkage is ?136.3 (2)°. The mol­ecules are linked by O—H?O intermolecular hydrogen bonds to form an infinite one‐dimensional chains along the c axis.  相似文献   

19.
The title compound, 3,3′‐(4‐pyridyl­imino)­di­propane­nitrile, C11H12N4, has a twofold axis and consists of a pyridine ring head and two cyano­ethyl tails, the three groups being linked by an N atom. The planar geometry around the amino N atom suggests conjugation with the π‐system of the pyridine ring. The mol­ecules are stacked in a layer structure via relatively weak to very weak intermolecular C—H⃛π and C—H⃛N hydrogen‐bond interactions.  相似文献   

20.
In the crystals of the title compound, [CuCl2(C6H6ClN)2], the Cu atom lies on an inversion centre and is four‐coordinated by two pyridine N atoms and two Cl atoms in trans positions. The coordination geometry is square planar, with Cu—N and Cu—Cl distances of 1.986 (2) and 2.2536 (11) Å, respectively. The two pyridine rings are parallel, but twist from the CuN2Cl2 coordination plane by about 95° in the complex mol­ecule. There are three kinds of intermolecular C—H⃛Cl hydrogen bonds in the crystals. Two of these types generate two‐dimensional molecular networks, viewed in the direction of the a axis, and the other connects adjacent molecular networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号