首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Structural and Magnetochemical Studies of Ba5Mn3F19 and Related Compounds AII5MIII3F19 Single crystal structure determinations by X‐ray methods were performed at the following compounds, crystallizing tetragonally body‐centred (Z = 4): Sr5V3F19 (a = 1423.4(2), c = 728.9(1) pm), Sr5Cr3F19 (a = 1423.5(2), c = 728.1(1) pm), Ba5Mn3F19 (a = 1468.9(1), c = 770.3(1) pm, Ba5Fe3F19 (a = 1483.5(1), c = 766.7(1) pm), and Ba5Ga3F19 (a = 1466.0(2), c = 760.1(2) pm). Only Ba5Mn3F19 was refined in space group I4cm (mean distances for elongated octahedra Mn1–F: 185/207 pm equatorial/axial; for compressed octahedra Mn2–F: 199/182 pm), the remaining compounds in space group I4/m. In all cases the octahedral ligand spheres of the M1 atoms showed disorder, the [M1F6] octahedra being connected into chains in one part of the compounds and into dimers in the other. The magnetic properties of the V, Cr and Mn compounds named above and of Pb5Mn3F19 and Sr5Fe3F19 as well were studied; the results are discussed in context with the in part problematic structures.  相似文献   

2.
Structural Studies with Usovites: Ba2CaMIIV2F14 (MIII = Mn, Fe), Ba2CaMnFe2F14 and Ba2CaCuM2IIIF14 (MIII = Mn, Fe, Ga). Single crystals of six compounds Ba2CaMIIM2IIIF14 were prepared to refine their usovite type structure (space group C2/c, Z = 4) using X‐ray diffractometer data. The cell parameters of the phases studied with MIIM2III= MnV2, FeV2, CuMn2, MnFe2, CuFe2 und CuGa2 are within the range 1374≤a/pm≤1384, 534≤b/pm≤542, 1474≤c/pm≤1510, 91, 3≤ß/°≤93, 2. The atoms Ca and MII are incompletely ordered on the 8‐ and 6‐coordinated positions, 4e and 4b, respectively. In the case of Ba2CaFeV2F14 and Ba2CaCuGa2F14 there is reciprocal substitution (x≈0, 1): (Ca1‐xMxII) (4e) and (M1‐xIICax) (4b). In the case of the other usovites Ca‐enriched phases Ba2Ca(M1‐yIICay)M2IIIF14 occured (up to y≈0, 35), exhibiting partial substitution at the octahedral position (4b) only, showing a corresponding increase in MII‐F distances. The distortion of [MIIF6] and [MIIIF6] octahedra within the structure is considerably enhanced on replacement by CuII and MnIII. The results of powder magnetic susceptibility measurements of Ba2CaMnV2F14 and Ba2CaFeV2F14 (TN≈7K) are reported.  相似文献   

3.
Structure and Magnetism of Fluorides Cs2MCu3F10 (M = Mg, Mn, Co, Ni), Variants of the CsCu2F5 Type X‐ray structure determinations of single crystals showed that compounds Cs2MCu3F10 crystallize with Z = 2 in space group P21/n (No.14) (M = Mn) of the CsCu2F5 type resp. in its supergroup I2/m (No.12) (M = Mg, Co, Ni). Cs2MgCu3F10: a = 714.9(1), b = 736.8(1), c = 940.4(1) pm, b = 96.29(1)°, (Mg‐F: 199.2 pm); Cs2MnCu3F10: a = 725.1(1), b = 742.7(1), c = 951.0(2) pm, b = 97.28(3)°, (Mn‐F: 209.1 pm); Cs2CoCu3F10: a = 717.8(3), b = 739.1(2), c = 939.4(4) pm, b = 97.49(2)°, (Co‐F: 203.1 pm); Cs2NiCu3F10: a = 716.3(1), b = 737.7(1), c = 938.2(2) pm, b = 97.09(1)°, (Ni‐F: 201.0 pm). As determined directly for the Mg compound and generally concluded from the average distances M‐F noted, M substitution concerns mainly the octahedrally coordinated position of the CsCu2F5 structure, the distortion of which is very much reduced thereby. Within the remaining [CuF4] and [CuF5] coordinations, in contrast to CsCu2F5, one F ligand is disordered, in case of the Mn compound the pyramidally coordinated Cu atom, too. The magnetic properties are complex and point to frustration and spin glass effects. Only at the diamagnetically substituted variants with M = Mg, Zn no Néel point appears, which is reached at 27, 23, 36 and 55 K for M = Mn, Co, Ni and Cu, resp. At lower temperatures ferri‐ resp. weak ferromagnetism and hysteresis is observed.  相似文献   

4.
Concerning the Crystal Structure of Ba3Al2F12 Preparing BaMnAlF7 we obtained single crystals of Ba3Al2F12 as a by‐product (a = 1020.3(2), b = 988.5(1), c = 952.2(1) pm, space group Pnnm, Z = 4). The redetermination confirmed the structure already known, but improved the results (R1′ = 0.028 and wR2 = 0.06 for 1908 and 2717 reflections, resp.). An interpretation is given for the relation of distances within the tetrameric anion [Al4F20]8— (average Al—F: 180, 1 pm). The construction of the cationic frame [Ba3F2]4+ is discussed.  相似文献   

5.
On the Structure of Ba2Wo3F4 and Ba2MoO3F4 Ba2[WO2/2O2F2]F2 has been prepared for the first time as colourless single crystals (from powder, Au-tube, 680°C, 90 d). It crystallizes in the monoclinic (C c) crystal system with a = 1151.1, b = 938.2, c = 718.8 pm, ß = 126.17°, Z = 4. dx = 6.17, dpyk = 6.13 g · cm?3. (Fourcirclediffractometer PW 1100, Fa. Philips, MoKα-, ω-2Θ-scan, 1832 I0(hkl) R = 8.3, Rw = 7.4%). Parameters see in the text. The isotypic Ba2MoO3F4 has been prepared as powder (a = 1147.5, b = 937.0, c = 725.1 pm, ß = 126.42°). The structure shows chains of (WO2/2O2F2) groups along [001]. To establish O2? and F? on the positions IR and Raman Spectra are employed. The Madelung Part of Lattice Energy, MAPLE, is calculated and discussed.  相似文献   

6.
Tetragonal Fluoroperovskites AM0,750,25F3 Deficient in Cations: K4MnIIM2IIIF12 and Ba2Cs2Cu3F12 By heating 2KMnF3 + K2MnF6 and BaF2, CsF + CuF2 respectively, the isostructural tetragonal compounds K4Mn3F12 (a = 832.2, c = 1643.0 pm) and Ba2Cs2Cu3F12 (a = 854.1, c = 1704.1 pm) were prepared. They crystallize in a cation-deficient perovskite structure exhibiting ordering of octahedral vacancies. Single crystal structures determinations in the space group I41/amd, Z = 4, yielded the following average distances within the octahedra, which are Jahn-Teller distorted for MnIII and CuII:MnII? F = 208.3 pm, MnIII? F = 4 × 183.0/2 × 209.7 pm; Cu? F = 190.7/227.1 and 190.6/236.4 pm, respectively. The results are discussed in comparison with related compounds.  相似文献   

7.
Ba3Cu2Al2F16 is monoclinic: a = 7.334(1)Å, b = 5.320(2)Å, c = 16.022(1)Å, β = 96.34(1)°, Z = 2. Its crystal structure was solved in the space group P21 (No. 4) from synchrotron X‐ray single crystal data using 2685 unique reflections (2639 with Fo/σ(Fo) > 4). The final R factor is 0.044. The structure consists of a succession along the c‐axis of the cell of three layers of two different kinds of sheets developing in the (a, b) plane. The first one, formulated [(AlF5)2]4— and hereafter named A, is built up from infinite cis‐chains of aluminium‐fluorine octahedra [AlF6], linked by two vertices and distanced by a. The second one, formulated [Cu2AlF11]4— and named B, is bidimensional. It is constituted of distorted copper‐fluorine octahedra [CuF6], linked by edges, which form infinite chains interconnected by three vertices of isolated [AlF6] octahedra. The stacking sequence of the sheets is (A, B, B). The barium ions, 12‐coordinated, are inserted between the sheets. The crystal structure of Ba3Cu2Al2F16 is closely related to that of Ba4Cu2Al3F21. Only the proportion and the stacking sequence of the two kinds of sheets in the c‐direction differ, according to two different compositions and two different symmetries.  相似文献   

8.
Two Gallium Fluoride Ammine Complexes: Ga(NH3)F3 and Ga(NH3)2F3 Two gallium trifluoride ammines, Ga(NH3)F3 and Ga(NH3)2F3, are obtained as single crystals through oxidation of gallium metal with NH4HF2 (Ga : NH4HF2 = 1 : 1.5) and NH4F (Ga : NH4F = 1 : 3.5), respectively, at 450 °C and 400 °C. Ga(NH3)F3 crystallizes with the non-centrosymmetric space group Abm2 (a = b = 544.6(2) pm, c = 986.6(4) pm) forming two-dimensional layers of [Ga(NH3)F5] octahedra. The addition of another NH3 molecule in Ga(NH3)2F3 (orthorhombic, Immm, a = 700.0(3) pm, b = 724.7(2) pm, c = 393.1(1) pm) leads to one-dimensional rods of [Ga(NH3)2F4] octahedra running parallel [001] which are stacked in the [010] direction. Infrared spectra suggest hydrogen bonding (N–H…F) in Ga(NH3)F3, for Ga(NH3)2F3 an unequivocal statement is not possible.  相似文献   

9.
The methods of preparation of ReO3F are revised. ReO3F is an amorphous yellow solid that crystallizes into colorless needles after prolonged heating. Its structure is that of a fluorine and oxygen bridged chain with hexa coordinated rhenium atoms (a = 670.9(2), b = 596.6(2), c = 1030.6(4) pm, β = 90.057(7)°, space group P2/c. In presence of donor solvents ReO3F·2L (L = (C2H5)2O, (CH3)2O, THF) are formed. ReO2F3, if crystallized from HF, exists in two crystalline forms, both are fluorine bridged chain polymers. (ReO2F3‐I: a = 1539.7(3), b = 999.6(3), c = 924.4(2) pm, β = 95.25(1)°, space group P21/c; ReO2F3‐II: a = 544.9(1), b = 494.2(1), c = 1253.7(2) pm, β = 98.543(7)°, space group P21/c. ReO2F3 crystallizes from CFCl3 or SO2FCl as fluorine bridged cyclic trimer (a = 881.4(4), c = 822.1(6) pm, γ = 120°, space group P63/m, or fluorine bridged cyclic tetramer (a = 1107.8(2), b = 999.4(2), c = 1347.9(3) pm, space group Cmca).  相似文献   

10.
On Usovites Ba2MIIM′IIM2IIIF14 and the High Pressure Phases of BaMnVF7 and BaMnFeF7: Compounds with BaMnGaF7 Structure The results of complete single crystal structure determinations of the monoclinic BaMnGaF7 type compounds Ba2CaCoV2F14 (and Ba2CdMn Fe2F14) are reported: C2/c, Z = 4, a = 1369.7 (1381.2), b = 538.4 (537.2), c = 1491.6 (1489.5) pm, β = 91.49 (91.11)°, Rg = 0.036 (0.038) for 4389 (2521) reflections. The atoms Ca/Co (Cd/Mn) distribute not completely ordered on the 8? and 6?coordinated sites of this “usovite” structure (Ba2CaMgAl2F14). This is also evident for Cd/Fe from Mössbauer spectra of Ba2CdFeAl2F14. The lattice constants of this and further seven compounds Ba2MIIM′IIM2IIIF14 (MII = Ca, Cd; M′II = Mg, Mn? Cu; MII = Al, Ga) are given. Two novel representatives of the same structure with MII = M′II = Mn could be prepared in the form of the high pressure phases of BaMn VF7 and BaMnFeF7. The magnetic properties of both modifications of the iron compound and of BaMnGaF7 are reported and discussed.  相似文献   

11.
On the Knowledge of Ba2[Fe3F10] For the first time colourless single crystals of Ba2Fe3F10 have been prepared by reduction of a mixture of 3 BaF2/7 FeF3 in a Fe-tube (reaction with the wall 750°C, 60 d). Ba2Fe3F10 crystallizes in the monoclinic spcgr. P21/c with a = 788.3(1), b = 623.0(1), c = 1868.0(3) pm, β = 111.79(1)º, Z = 4. (Fourcircle diffractometer PW 1100, Fa. Philips, MoKα, 2383 of 2383 I0(hkl), R = 8.1%, Rw = 4.1%, parameters see in the text). The Madelung Part of Lattice Energy, MAPLE, is calculated and discussed.  相似文献   

12.
Ba5[CrN4]N: The First Nitridochromate(V) Ba5[CrN4]N is prepared by reaction of mixtures of Li3N, Ba3N2 and CrN/Cr2N (1 : 1) (molar ratio Li : Ba : Cr = 3 : 5 : 1) in tantalum crucibles at 700°C with flowing nitrogen (1 atm) within a period of 48 h. After cooling down to room temperature (60°C/h) black-shining single crystals of the ternary phase with a platy habit are obtained (monoclinic, C2/m; a = 1054.0(2) pm, b = 1170.9(3) pm, c = 937.7(2) pm, b? = 110,79(2)°; Z = 4). The crystal structure contains isolated complex anions [CrVN4]7? which nearly satisfy the ideal tetrahedral symmetry (Cr? N [pm]: 2 × 175.3(4), 2 × 175.8(5); N? Cr? N [°]: 106.8(2), 109.5(2), 2 × 109.9(2), 2 × 110,3(2)). The coordination sphere for each of the terminal nitride functions of the complex anions is completed by five neighbouring Ba2+ ions (distorted CrBa5 octahedra). The octahedra are connected via common CrBa2 faces as well as CrBa edges thereby forming condensed tetrameric octahedral groups. The isolated nitride ions which are also present in the crystal structure of Ba5[CrN4]N are in an octahedral environment of Ba2+ ions. The presence of a d1-System (Cr(V)) is confirmed by magnetic susceptibility data.  相似文献   

13.
Ba2CuAlF9 is monoclinic: a = 5.374(2) Å, b = 7.312(2) Å, c = 9.371(3) Å, β = 90.20(1)°, Z = 2, space group P21/c (n° 14). The crystal structure was solved from X-ray single crystal data using 1071 unique reflections (900 with Fo/σ(Fo) > 4, R factor = 0.075). It is built up from infinite isolated cis chains of [MF6] mixed occupied fluorine octahedra sharing each, one edge and one vertex (M is randomly Cu or Al). An analogous kind of linkage was already observed for two other compounds from the ternary system BaF2/CuF2/AlF3. Close structural relationships exist between the cationic subnetworks of γ-BaAlF5 and Ba2CuAlF9.  相似文献   

14.
Crystal Structure of the Mixed-Valence Iron Fluorid Hydrate Fe3F8 · 2 H2O Newly prepared was the red, monoclinic compound Fe3F8 · 2 H2O, single crystals of which could be obtained under hydrothermal high pressure conditions (space group C2/m with a = 761.2(3), b = 750.0(1), c = 746.9(3) pm, β = 118.38(2)° and Z = 2). The X-ray structure determination (RG = 0.0192 and 635 reflexions) yielded a framework structure, in which layers of octahedra 2[FeIIIF6/2] are connected via corners of [FeIIF4/2(H2O)2]-octahedra. The average distances in the nearly ideal octahedra are FeIII? F = 193.0, FeII? F = 208.1 and FeII? OH2 = 211.5 pm.  相似文献   

15.
Crystals of ordered and disordered Ba7F12Cl2 were prepared by flux growth and solid state reactions. These new structures were characterized by single crystal and powder X‐ray diffraction. The disordered variant which shows disorder on one of the cation sites was obtained from a BaF2 + BaCl2 + NaCl/NaF flux. It has hexagonal space group P63/m (176) with one formula unit per unit cell. The lattice constants are a = b = 1059.55(5) pm and c = 420.10(4) pm (at 21 °C). The structure was refined to R(Rw) = 0.026(0.030) for 346 independent reflections and 26 parameters. Slow cooling of a mixture of BaF2 and LiCl yields the ordered variant. This one crystallizes in the hexagonal space group P6 (174) with one formula per unit cell. Lattice constants at 21 °C are a = b = 1063.46(2) pm and c = 417.52(1) pm. The structure was refined to R(Rw) = 0.017 (0.017) for 638 independent reflections and 45 parameters. The structural arrangement and the interatomic distances of the two variants are mutually similar. The barium atoms have coordination number nine. Propeller‐type arrangements with a chloride ion on the axis and the fluoride ions as blades are observed. These latter ones are interconnected into ‘channels' of tricapped fluoride prisms. Occupation disorder of the barium sites in the channels of the disordered variant makes the main difference between the two. An unexpectedly high X‐ray density obtained for both variants of Ba7F12Cl2 can be correlated to the density of other barium fluorohalides having a coordination number of nine for the barium ion.  相似文献   

16.
The ternary system BaF2/CuF2/AlF3 is investigated by X‐ray diffraction techniques and an isothermal section at 620 °C is established. It exhibits ten quaternary phases and among them Ba45Cu28Al17F197. This fluoride has a triclinic cell: a = 14.024(1) Å, b = 23.778(1) Å, c = 25.480(1) Å, α = 90.44(1)°, β = 90.26(1)°, γ = 107.03(1)°, Z = 2. Its crystal structure was solved in the space group P1 (no1), from X‐ray single crystal data using 41976 unique reflections. It is built up from a complex arrangement of aluminium and copper fluorine polyhedra, which are regular [AlF6] and strongly distorted [CuF6] octahedra, [CuF6] trigonal prisms and [Cu2F10] bipolyhedral units constituted either by two octahedra, or one octahedron and one trigonal prism, connected by an edge. These polyhedra are organized in planes of about two octahedra thickness, which form a succession of sheets running perpendicularly to the [100] direction of the cell. Each sheet is constituted by infinite chains of distorted polyhedra connected by edges and vertices and linked together by the vertices of blocks of four and six polyhedra, involving aluminium fluorine octahedra and copper fluorine bipolyhedral units or octahedra. The barium ions, 10 to 14‐coordinated to fluorine atoms, ensure the electroneutrality of the structure. They are inserted inside the planes.  相似文献   

17.
X-Ray Single Crystal Structure Determinations of the Potassium Copper(II) Fluorides K2CuF4 and K3Cu2F7 With single crystals of the tetragonal compounds K2CuF4 (a = 414.7(2), c = 1273(3) pm) and K3Cu2F7 (a = 415.6(3), c = 2052(3) pm), showing no superstructure reflections, crystal structure determinations were based on space group I4/mmm of the K2NiF4 and Sr3Ti2O7 type, resp. The shape of F0-Fourier maxima at the positions of linking fluorine atoms within the layers of octahedra suggested disorder of bridging ligands caused by multidomain structure, which could be refined assuming half occupation of higherfold positions. The results confirmed the Jahn-Teller-distortions of octahedra being elongated with a significant orthorhombic component: Cu? F = 190.9(7)/193.9(2)/223.8(7) pm in K2CuF4 (RW = 0.020) and 190.0(7)/194.7/225.6(7) pm in K3Cu2F7 (RW = 0.023). In the acentric octahedra of the latter compound the intermediate distance is averaged from the splitted lengths 192.7(4)/196.8(1) pm of axes along the c direction.  相似文献   

18.
The crystal structure of Ba58Ga22F180O is established by means of X‐ray single crystal diffraction. It is tetragonal: a = 22.033(1) Å, c = 17.626(1) Å, Z = 2. The structure is solved in the space group I4/mmm (n° 139), using 3219 independent reflections. It is mainly built from a deficient arrangement of fluorite‐type [FBa4] tetrahedra connected by edges and vertices which constitutes the skeleton of the structure, giving rise to large cavities in which lie isolated fluorine ions in tetrahedral and octahedral barium environment, isolated [F2Ba6] bitetrahedra, isolated barium ions in eight‐coordination of fluorine and a complex arrangement of isolated [GaF6] octahedra and isolated [Ga2F10O] bioctahedra.  相似文献   

19.
20.
A New Quaternary Oxotitanate: Ba4Ti10Al2O27 Single crystal of Ba4Ti10Al2O27 were prepared by heating oxide mixtures with NaOH flux for 20 days to 1300°C. X-ray investigations show monoclinic symmetry: a = 1973.7; b = 1134.9; c = 983.7 pm; β = 109.4°; space group C2h3—C2/m. Ti4+/Al3+ occupy statistically more or less distorted octahedra, Ba2+ has an coordination number of 11 or 12, respectively. The complex frame work of octahedra is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号