首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two polymorphs of 20‐desmethyl‐β‐carotene (systematic name: 20‐nor‐β,β‐carotene), C39H54, in monoclinic and triclinic space groups, were formed in the same vial by recrystallization from pyridine and water. Each polymorph crystallizes with the complete molecule as the asymmetric unit, and the two polymorphs show differing patterns of disorder. The β end rings of both polymorphs have the 6‐scis conformation, and are twisted out of the plane of the polyene chain by angles of −53.2 (8) and 47.3 (8)° for the monoclinic polymorph, and −43.6 (3) and 56.1 (3)° for the triclinic polymorph. The cyclohexene end groups are in the half‐chair conformation, but the triclinic polymorph shows disorder of one ring. Overlay of the molecules shows that they differ in the degree of nonplanarity of the polyene chains and the angles of twist of the end rings. The packing arrangements of the two polymorphs are quite different, with the monoclinic polymorph showing short intermolecular contacts of the disordered methyl groups with adjacent polyene chain atoms, and the triclinic polymorph showing π–π stacking interactions of the almost parallel polyene chains. The determination of the crystal structures of the two title polymorphs of 20‐desmethyl‐β‐carotene allows information to be gained regarding the structural effects on the polyene chain, as well as on the end groups, versus that of the parent compound β‐carotene. The absence of the methyl group is known to have an impact on various functions of the title compound.  相似文献   

2.
The title compound, alternatively called 24‐nor‐5β‐chol‐22‐ene‐3β,7α,12α‐triyl triformate, C26H38O6, has a cis junction between two of the six‐membered rings. All three of the six‐membered rings have chair conformations that are slightly flattened and the five‐membered ring has a 13β,14α‐half‐chair conformation. The 3β, 7α and 12α ring substituents are axial and the 17β group is equatorial. The 3β‐formyl­oxy group is involved in one weak intermol­ecular C—H⋯O bond, which links the mol­ecules into dimers in a head‐to‐head fashion.  相似文献   

3.
The structures of methyl 3β‐acetoxy‐12‐oxo‐18β‐olean‐28‐oate [C33H52O5, (I)] and methyl 3β‐acetoxy‐12,19‐dioxoolean‐9(11),13(18)‐dien‐28‐oate [C33H46O6, (II)] are described. In (I), all rings are in the chair conformation, rings D and E are cis and the other rings trans‐fused. In compound (II), only rings A and E are in the chair conformation, ring B has a distorted chair conformation, ring C a distorted half‐boat and ring D an insignificantly distorted half‐chair conformation.  相似文献   

4.
The title compound (systematic name: 3‐benzyl­idene‐6‐iso­butyl­piperazine‐2,5‐dione), C15H18N2O2, an α,β‐dehydro­phenyl­alanine containing diketopiperazine, crystallizes in the space group P1 with two mol­ecules in the asymmetric unit arranged antiparallel to one another. The α,β‐dehydro­phenyl­alanine (ΔPhe) residue in this cyclic peptide retains its planarity but deviates from the standard conformations observed in its linear analogues. Each type of mol­ecule forms a linear chain with mol­ecules of the same type via pairwise N—H⋯O hydrogen bonds, while weaker C—H⋯O inter­actions link the chains together to form a three‐dimensional network.  相似文献   

5.
In the title compounds, C21H30O4, (I), and C23H34O4, (II), respectively, which are valuable intermediates in the synthesis of important steroid derivatives, rings A and B are cis‐(5β,10β)‐fused. The two molecules have similar conformations of rings A, B and C. The presence of the 5β,6β‐epoxide group induces a significant twist of the steroid nucleus and a strong flattening of the B ring. The different C17 substituents result in different conformations for ring D. Cohesion of the molecular packing is achieved in both compounds only by weak intermolecular interactions. The geometries of the molecules in the crystalline environment are compared with those of the free molecules as given by ab initio Roothan Hartree–Fock calculations. We show in this work that quantum mechanical ab initio methods reproduce well the details of the conformation of these molecules, including a large twist of the steroid nucleus. The calculated twist values are comparable, but are larger than the observed values, indicating a possible small effect of the crystal packing on the twist angles.  相似文献   

6.
In the title monohydrated cocrystal, namely 1,3‐diamino‐5‐azaniumyl‐1,3,5‐trideoxy‐cis‐inositol iodide–1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol–water (1/1/1), C6H16N3O3+·I·C6H15N3O3·H2O, the neutral 1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol (taci) molecule and the monoprotonated 1,3‐diamino‐5‐azaniumyl‐1,3,5‐trideoxy‐cis‐inositol cation (Htaci+) both adopt a chair conformation, with the three O atoms in axial and the three N atoms in equatorial positions. The cation, but not the neutral taci unit, exhibits intramolecular O—H...O hydrogen bonding. The entire structure is stabilized by a complex three‐dimensional network of intermolecular hydrogen bonds. The neutral taci entities and the Htaci+ cations are each aligned into chains along [001]. In these chains, two O—H...N interactions generate a ten‐membered ring as the predominant structural motif. The rings consist of vicinal 2‐amino‐1‐hydroxyethylene units of neighbouring molecules, which are paired via centres of inversion. The chains are interconnected into undulating layers parallel to the ac plane, and the layers are further held together by O—H...N hydrogen bonds and additional interactions with the iodide counter‐anions and solvent water molecules.  相似文献   

7.
The crystal structure of 21α‐fluoro‐7‐norvouacapane‐17β,21α‐lactone, C20H25FO3, a new synthetic derivative of the diterpenoid 6α,7β‐di­hydroxy­vouacapan‐17β‐oic acid isolated from Pterodon polygalaeflorus Benth fruits, is described.  相似文献   

8.
Annonalide (3β,20‐epoxy‐3α,16‐dihydroxy‐15‐oxo‐7‐pimaren‐19,6β‐olide, C20H26O6, 1 ) is the major (9βH)‐pimarane diterpene isolated from tubers of Cassimirella ampla, and it exhibits cytotoxic properties upon interaction with ctDNA. We have prepared new derivatives of 1 by modification of the (9βH)‐pimarane backbone and report here the semisynthesis and absolute configuration of a novel rearranged 19,20‐δ‐lactone (9βH)‐pimarane. Our approach was the reduction of the carbonyl groups of 1 with sodium borohydride, at positions C15 (no stereoselectivity) and C3 (stereoselective reduction), followed by rearrangement of the 6,19‐γ‐lactone ring into the six‐membered 19,20‐δ‐lactone ring in 4a (3β,6β,16‐trihydroxy‐7‐pimaren‐19,20β‐olide monohydrate, C20H30O6·H2O). The absolute structure of the new compound, 4a , was determined unambiguously with a Flack parameter x of −0.01 (11), supporting the stereochemistry assignment of 1 redetermined here. Besides the changes in the pattern of covalent bonds caused by reduction and lactone rearrangement, the conformation of one of the three fused cyclohexane rings is profoundly different in 4a , adopting a chair conformation instead of the boat shape found in 1 . Furthermore, the intramolecular hydrogen bond present in 1 is lost in new compound 4a , due to hydrogen bonding between the 3‐OH group and the solvent water molecule.  相似文献   

9.
The crystal structures of 2′,4′‐di­hydroxy‐3‐methoxy‐α,β‐di­hydro­chalcone, C16H16O4, and 2′,4‐di­hydroxy‐α,β‐di­hydro­chalcone, C15H14O3, have been determined. In both compounds, the structure consists of two nearly planar six‐membered aromatic rings connected by a propanal chain, which is bent in the methoxy compound and almost straight in the other compound. In the crystal structures, the molecular units of both compounds are linked by O—H⋯O hydrogen bonds to form infinite one‐dimensional chains. Hydro­gen bonds and C—H⋯O contacts in the crystal structures were studied by topological analysis of charge density based on Hartree–Fock calculations. Almost all of the investigated C—H⋯O contacts should be characterized as weak hydrogen bonds.  相似文献   

10.
3β‐Hydr­oxy‐7‐drimen‐12,11‐olide hemihydrate, C15H22O3·0.5H2O, (I), has two sesquiterpene mol­ecules and one water mol­ecule in the asymmetric unit. The OH groups of both mol­ecules and both H atoms of the water mol­ecule are involved in near‐linear inter­molecular hydrogen bonds, having O⋯O distances in the range 2.632 (3)–2.791 (2) Å. 3β‐Acet­oxy‐7‐drimen‐12,11‐olide, C17H24O4, (II), has its ring system in very nearly the same conformation as the two mol­ecules of (I).  相似文献   

11.
The title compounds, 17‐(1H‐indazol‐1‐yl)androsta‐5,16‐dien‐3β‐ol, (I), and 17‐(2H‐indazol‐2‐yl)androsta‐5,16‐dien‐3β‐ol, (II), both C26H32N2O, have an indazole substituent at the C17 position. The six‐membered B ring of each compound assumes a half‐chair conformation. A twist of the steroid skeleton is observed and reproduced in quantum‐mechanical ab initio calculations of the isolated molecule using a molecular orbital Hartree–Fock method. In the 1H‐indazole derivative, (I), the molecules are joined in a head‐to‐head fashion via O—H...O hydrogen bonds, forming chains along the a axis. In the 2H‐indazole derivative, (II), the molecules are joined in a head‐to‐tail fashion with one of the N atoms of the indazole ring system acting as the acceptor. The hydrogen‐bond pattern consists of zigzag chains running along the b axis. Substituted steroids have proven to be effective in inhibiting androgen biosynthesis through coordination of the Fe atoms of some enzymes, and this study shows that indazole‐substituted steroids adopt twisted conformations that restrict their intermolecular interactions.  相似文献   

12.
In the title compound, C23H34O4, which is an intermediate in the synthesis of pregnane derivatives with a modified skeleton that show potent abortion‐inducing activity, the conformation of ring B is close to half‐chair due to the presence of both the C=C double bond and the axial 5β‐methyl group. Rings A and C have conformations close to chair, while ring D has a twisted conformation around the bridgehead C—C bond. Molecules are hydrogen bonded via the hydroxyl and acetoxy groups into infinite chains. Quantum‐mechanical ab initio Roothan Hartree–Fock calculations show that crystal packing might be responsible for the low values of the angles between rings A and B, and between ring A and rings C and D, as well as for a different steric position of the methyl ketone side chain compared to the geometry of the free molecule.  相似文献   

13.
The title compounds, both C23H34O5, are the 5α and 5β configurations of two diacetate epimers. The 5β‐diacetate crystallizes in an hexagonal structure, unusual for steroid molecules. The unit cell has an accessible solvent volume of 358 Å3, responsible for clathrate behaviour. The 5β‐epimer also features some shorter than average bond lengths in the 3α,4β‐acetoxy groups. The conformations of the molecules of both epimers are compared with those obtained through abinitio quantum chemistry calculations. Cohesion of the crystals can be attributed to van der Waals and weak molecular C—H⋯O interactions.  相似文献   

14.
The title compound, [PtCl2(C13H26NP)2], is a rare example of a sterically bulky ligand adopting a cis geometry in a square‐planar complex. It crystallizes on a twofold rotation axis which bisects the Pt centre and the P—Pt—P′ and Cl—Pt—Cl′ angles. The ligand exhibits a random packing disorder in the N,N‐dimethylpropylamine substituent, with the two orientations refining to occupancies of 0.404 (15) and 0.596 (15). Weak intermolecular interactions between a Cl and a H atom of the ligand of a neighbouring molecule result in extended chains along the a axis. The effective cone angle for the dimethyl[3‐(9‐phosphabicyclo[3.3.1]non‐9‐yl)propyl]amine (Phoban[3.3.1]‐C3NMe2) ligand was determined as being in the range 160–181°, depending on the choice of atoms used in the calculations.  相似文献   

15.
In the title compound, C24H36O6, the ester linkage in ring A is equatorial. The six‐membered rings A, B and C have chair conformations. The five‐membered ring D adopts a 13β,14α‐half‐chair conformation and the E ring adopts an envelope conformation. The A/B, B/C and C/D ring junctions are trans, whereas the D/E junction is cis.  相似文献   

16.
The individual, deuterated, isomeric α- and β-carotenes were isolated from the green alga, Scenedesmus obliquus, cultivated in D2O containing 99·7 to 99·8 atom percent deuterium. Mass spectroscopy showed that both the α- and β-deuterio-carotene preparations contained principally the fully deuterated pigment molecules (C40D56), small quantities of deuterated molecules with one proton (C40D55H) and yet smaller quantities of deuterated molecules with two protons (C40D54H2). From statistical calculations the deuterio-carotene preparations also contained one to several isotopically-substituted deuterio-carotenes of each mass in the mass range 585 to 599 because of variation of the number of 13C and H atoms per molecule. The mass fragmentation of the deuterated pigments was analogous to that of the respective ordinary α- and β-carotene. It indicated that the protons in the C40D55H and C40D54H2 molecules were distributed approximately randomly in various parts of the structure as in the terminal rings and in the ends and central portions of the polyene chain.  相似文献   

17.
The title complex salt, [Fe(C5H5)(C13H10S2)]PF6·0.33C3H6O, obtained from an acetone–diethyl ether–dichloromethane mixture at 280 (2) K, has three cationic molecules (AC), three hexafluoridophosphate counter‐anions and one acetone solvent molecule in the asymmetric unit. Two of the three cations contain FeCp (Cp is cyclopentadienyl) inside the fold of the heterocycle. The dihedral angles between the planes of the external (complexed and uncomplexed) benzene rings in the thianthrene molecule are 146.5 (2)° for FeCp‐out‐of‐fold molecule A, and 139.0 (3) and 142.5 (2)° for the two FeCp‐in‐fold molecules B and C, respectively. The complexed Cp and benzene rings in each molecule are almost parallel, with a dihedral angle between the planes of 0.2 (5)° for molecule A, 2.8 (5)° for B, and 2.19 (4) and 6.86 (6)° for the disordered Cp ring in C.  相似文献   

18.
3β,6β‐Di­hydroxy­olean‐12‐en‐27‐oic acid, C30H48O4, a cytotoxic and apoptosis‐inducing oleanane triterpenoid, which was isolated from the rhizome of Astilbe chinensis, consists of a linear array of five fused six‐membered rings. The central ring has a slightly distorted half‐chair conformation, while the four outer rings adopt chair conformations. Two hydroxy groups and one carboxy group serve simultaneously as hydrogen‐bond donors and acceptors, forming molecular chains.  相似文献   

19.
The structures of the open‐chain amide carboxylic acid raccis‐2‐[(2‐methoxyphenyl)carbamoyl]cyclohexane‐1‐carboxylic acid, C15H19NO4, (I), and the cyclic imides raccis‐2‐(4‐methoxyphenyl)‐3a,4,5,6,7,7a‐hexahydroisoindole‐1,3‐dione, C15H17NO3, (II), chiral cis‐3‐(1,3‐dioxo‐3a,4,5,6,7,7a‐hexahydroisoindol‐2‐yl)benzoic acid, C15H15NO4, (III), and raccis‐4‐(1,3‐dioxo‐3a,4,5,6,7,7a‐hexahydroisoindol‐2‐yl)benzoic acid monohydrate, C15H15NO4·H2O, (IV), are reported. In the amide acid (I), the phenylcarbamoyl group is essentially planar [maximum deviation from the least‐squares plane = 0.060 (1) Å for the amide O atom] and the molecules form discrete centrosymmetric dimers through intermolecular cyclic carboxy–carboxy O—H...O hydrogen‐bonding interactions [graph‐set notation R22(8)]. The cyclic imides (II)–(IV) are conformationally similar, with comparable benzene ring rotations about the imide N—Car bond [dihedral angles between the benzene and isoindole rings = 51.55 (7)° in (II), 59.22 (12)° in (III) and 51.99 (14)° in (IV)]. Unlike (II), in which only weak intermolecular C—H...Oimide hydrogen bonding is present, the crystal packing of imides (III) and (IV) shows strong intermolecular carboxylic acid O—H...O hydrogen‐bonding associations. With (III), these involve imide O‐atom acceptors, giving one‐dimensional zigzag chains [graph‐set C(9)], while with the monohydrate (IV), the hydrogen bond involves the partially disordered water molecule which also bridges molecules through both imide and carboxy O‐atom acceptors in a cyclic R44(12) association, giving a two‐dimensional sheet structure. The structures reported here expand the structural database for compounds of this series formed from the facile reaction of cis‐cyclohexane‐1,2‐dicarboxylic anhydride with substituted anilines, in which there is a much larger incidence of cyclic imides compared to amide carboxylic acids.  相似文献   

20.
Methyl 2‐acetamido‐2‐deoxy‐β‐d ‐glucopyranoside (β‐GlcNAcOCH3), (I), crystallizes from water as a dihydrate, C9H17NO6·H2O, containing two independent molecules [denoted (IA) and (IB)] in the asymmetric unit, whereas the crystal structure of methyl 2‐formamido‐2‐deoxy‐β‐d ‐glucopyranoside (β‐GlcNFmOCH3), (II), C8H15NO6, also obtained from water, is devoid of solvent water molecules. The two molecules of (I) assume distorted 4C1 chair conformations. Values of ϕ for (IA) and (IB) indicate ring distortions towards BC2,C5 and C3,O5B, respectively. By comparison, (II) shows considerably more ring distortion than molecules (IA) and (IB), despite the less bulky N‐acyl side chain. Distortion towards BC2,C5 was observed for (II), similar to the findings for (IA). The amide bond conformation in each of (IA), (IB) and (II) is trans, and the conformation about the C—N bond is anti (C—H is approximately anti to N—H), although the conformation about the latter bond within this group varies by ∼16°. The conformation of the exocyclic hydroxymethyl group was found to be gt in each of (IA), (IB) and (II). Comparison of the X‐ray structures of (I) and (II) with those of other GlcNAc mono‐ and disaccharides shows that GlcNAc aldohexopyranosyl rings can be distorted over a wide range of geometries in the solid state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号