首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Zn complexes bis(acetylacetonato‐κ2O,O′)bis{4′‐[4‐(methylsulfanyl)phenyl]‐4,2′:6′,4′′‐terpyridine‐κN1}zinc(II), [Zn(C5H7O2)2(C22H17N3S)2], (I), and {μ‐4′‐[4‐(methylsulfanyl)phenyl]‐4,2′:6′,4′′‐terpyridine‐κ2N1:N1′′}bis[bis(acetylacetonato‐κ2O,O′)zinc(II)], [Zn2(C5H7O2)4(C22H17N3S)], (II), are discrete entities with different nuclearities. Compound (I) consists of two centrosymmetrically related monodentate 4′‐[4‐(methylsulfanyl)phenyl]‐4,2′:6′,4′′‐terpyridine (L1) ligands binding to one ZnII atom sitting on an inversion centre and two centrosymmetrically related chelating acetylacetonate (acac) groups which bind via carbonyl O‐atom donors, giving an N2O4 octahedral environment for ZnII. Compound (II), however, consists of a bis‐monodentate L1 ligand bridging two ZnII atoms from two different Zn(acac)2 fragments. Intra‐ and intermolecular interactions are weak, mainly of the C—H...π and π–π types, mediating similar layered structures. In contrast to related structures in the literature, sulfur‐mediated nonbonding interactions in (II) do not seem to have any significant influence on the supramolecular structure.  相似文献   

2.
π‐Conjugated organic materials exhibit high and tunable nonlinear optical (NLO) properties, and fast response times. 4′‐Phenyl‐2,2′:6′,2′′‐terpyridine (PTP) is an important N‐heterocyclic ligand involving π‐conjugated systems, however, studies concerning the third‐order NLO properties of terpyridine transition metal complexes are limited. The title binuclear terpyridine CoII complex, bis(μ‐4,4′‐oxydibenzoato)‐κ3O,O′:O′′;κ3O′′:O,O′‐bis[(4′‐phenyl‐2,2′:6′,2′′‐terpyridine‐κ3N,N′,N′′)cobalt(II)], [Co2(C14H8O5)2(C21H15N3)2], (1), has been synthesized under hydrothermal conditions. In the crystal structure, each CoII cation is surrounded by three N atoms of a PTP ligand and three O atoms, two from a bidentate and one from a symmetry‐related monodentate 4,4′‐oxydibenzoate (ODA2−) ligand, completing a distorted octahedral coordination geometry. Neighbouring [Co(PTP)]2+ units are bridged by ODA2− ligands to form a ring‐like structure. The third‐order nonlinear optical (NLO) properties of (1) and PTP were determined in thin films using the Z‐scan technique. The title compound shows a strong third‐order NLO saturable absorption (SA), while PTP exhibits a third‐order NLO reverse saturable absorption (RSA). The absorptive coefficient β of (1) is −37.3 × 10−7 m W−1, which is larger than that (8.96 × 10−7 m W−1) of PTP. The third‐order NLO susceptibility χ(3) values are calculated as 6.01 × 10−8 e.s.u. for (1) and 1.44 × 10−8 e.s.u. for PTP.  相似文献   

3.
The molecular structures of trichlorido(2,2′:6′,2′′‐terpyridine‐κ3N,N′,N′′)gallium(III), [GaCl3(C15H11N3)], and tribromido(2,2′:6′,2′′‐terpyridine‐κ3N,N′,N′′)gallium(III), [GaBr3(C15H11N3)], are isostructural, with the GaIII atom displaying an octahedral geometry. It is shown that the Ga—N distances in the two complexes are the same within experimental error, in contrast to expected bond lengthening in the bromide complex due to the lower Lewis acidity of GaBr3. Thus, masking of the Lewis acidity trends in the solid state is observed not only for complexes of group 13 metal halides with monodentate ligands but for complexes with the polydentate 2,2′:6′,2′′‐terpyridine donor as well.  相似文献   

4.
A terpyridine derivative DPTP [di-(4-methylphenyl)-2,2':6',2"-terpyridine] was conveniently synthesized from 2-bromopyridine via halogen-dance reaction, Kharash coupling and Stille coupling reaction. Then its corresponding ruthenium complex Ru-DPTP [N,N,N-4,4''-di-(4-methy,phenyl)-2,2':6',2"-terpyridine-N,N,N-tris(is,-thi,cyanat,)- ruthenium(H) ammonium] was obtained and fully characterized by IR, UV-Vis, ESI MS and elemental analysis. The MLCT absorption band of Ru-DPTP was blue-shifted from 570 to 500 nm upon addition of Hg^2+. Among a series of surveyed metal ions, the complex showed a unique recognition to Hg^2+, indicating that it can be used as a selective colorimetric sensor for Hg^2+.  相似文献   

5.
The aldehyde moiety in the title complex, chloro(2‐pyridinecarboxaldehyde‐N,O)(2,2′:6′,2′′‐terpyridine‐κ3N)ruthenium(II)–chloro­(2‐pyridine­carboxyl­ic acid‐N,O)(2,2′:6′,2′′‐ter­pyridine‐κ3N)­ruthenium(II)–perchlorate–chloro­form–water (1.8/0.2/2/1/1), [RuCl­(C6H5NO)­(C15H11N3)]1.8[RuCl­(C6H5­NO2)(C15H11N3)]0.2­(ClO4)2·­CHCl3·­H2O, is a structural model of substrate coordination to a transfer hydrogenation catalyst. The title complex features two independent RuII complex cations that display very similar distorted octahedral coordination provided by the three N atoms of the 2,2′:6′,2′′‐ter­pyridine ligand, the N and O atoms of the 2‐pyridine­carbox­aldehyde (pyCHO) ligand and a chloride ligand. One of the cation sites is disordered such that the aldehyde group is replaced by a 20 (1)% contribution from a carboxyl­ic acid group (aldehyde H replaced by carboxyl O—H). Notable dimensions in the non‐disordered complex cation are Ru—N 2.034 (2) Å and Ru—O 2.079 (2) Å to the pyCHO ligand and O—C 1.239 (4) Å for the pyCHO carbonyl group.  相似文献   

6.
The title compound, [4′‐(4‐bromophenyl)‐2,2′:6′,2′′‐terpyridine]chlorido(trifluoromethanesulfonato)copper(II), [Cu(CF3O3S)Cl(C21H14BrN3)], is a new copper complex containing a polypyridyl‐based ligand. The CuII centre is five‐coordinated in a square‐pyramidal manner by one substituted 2,2′:6′,2′′‐terpyridine ligand, one chloride ligand and a coordinated trifluoromethanesulfonate anion. The Cu—N bond lengths differ by 0.1 Å for the peripheral and central pyridine rings [2.032 (2) (mean) and 1.9345 (15) Å, respectively]. The presence of the trifluoromethanesulfonate anion coordinated to the metal centre allows Br...F halogen–halogen interactions, giving rise to the formation of a dimer about an inversion centre. This work also demonstrates that the rigidity of the ligand allows the formation of other types of nonclassical interactions (C—H...Cl and C—H...O), yielding a three‐dimensional network.  相似文献   

7.
The title coordination polymer, poly[bis[μ3‐4‐(3,2′:6′,3′′‐terpyridin‐4′‐yl)benzoato]cadmium(II)], [Cd(C22H14N3O2)2]n or [Cd(3‐cptpy)2]n, (I), has been synthesized solvothermally and characterized by IR spectroscopy, thermogravimetric analysis, and single‐crystal and powder X‐ray diffraction. The structure is composed of 3‐cptpy? ligands bridging Cd atoms, with each Cd atom coordinated by six ligands and each ligand coordinating to three Cd atoms. Each Cd atom is in a slightly distorted trans‐N2O4 octahedral environment, forming a two‐dimensional layer structure with a (3,6)‐connected topology. Layers are linked to each other by π–π stacking, resulting in a three‐dimensional supramolecular framework. The strong luminescence and good thermal stability of (I) indicate that it can potentially be used as a luminescence sensor. The compound also shows a highly selective and sensitive response to 2,4,6‐trinitrophenol through the luminescence quenching effect.  相似文献   

8.
The reaction between [PtCl(terpy)]·2H2O (terpy is 2,2′:6′,2′′‐terpyridine) and pyrazole in the presence of two equivalents of AgClO4 in nitromethane yields the title compound, [Pt(C3H4N2)(C15H11N3)](ClO4)2·CH3NO2, as a yellow crystalline solid. Single‐crystal X‐ray diffraction shows that the dicationic platinum(II) chelate is square planar with the terpyridine ligand occupying three sites and the pyrazole ligand occupying the fourth. The torsion angle subtended by the pyrazole ring relative to the terpyridine chelate is 62.4 (6)°. Density functional theory calculations at the LANL2DZ/PBE1PBE level of theory show that in vacuo the lowest‐energy conformation has the pyrazole ligand in an orientation perpendicular to the terpyridine ligand (i.e. 90°). Seemingly, the stability gained by the formation of hydrogen bonds between the pyrazole NH group and the perchlorate anion in the solid‐state structure is sufficient for the chelate to adopt a higher‐energy conformation.  相似文献   

9.
Two new one‐dimensional CuII coordination polymers (CPs) containing the C2h‐symmetric terphenyl‐based dicarboxylate linker 1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylate (3,3′‐TPDC), namely catena‐poly[[bis(dimethylamine‐κN)copper(II)]‐μ‐1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylato‐κ4O,O′:O′′:O′′′] monohydrate], {[Cu(C20H12O4)(C2H7N)2]·H2O}n, (I), and catena‐poly[[aquabis(dimethylamine‐κN)copper(II)]‐μ‐1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylato‐κ2O3:O3′] monohydrate], {[Cu(C20H12O4)(C2H7N)2(H2O)]·H2O}n, (II), were both obtained from two different methods of preparation: one reaction was performed in the presence of 1,4‐diazabicyclo[2.2.2]octane (DABCO) as a potential pillar ligand and the other was carried out in the absence of the DABCO pillar. Both reactions afforded crystals of different colours, i.e. violet plates for (I) and blue needles for (II), both of which were analysed by X‐ray crystallography. The 3,3′‐TPDC bridging ligands coordinate the CuII ions in asymmetric chelating modes in (I) and in monodenate binding modes in (II), forming one‐dimensional chains in each case. Both coordination polymers contain two coordinated dimethylamine ligands in mutually trans positions, and there is an additional aqua ligand in (II). The solvent water molecules are involved in hydrogen bonds between the one‐dimensional coordination polymer chains, forming a two‐dimensional network in (I) and a three‐dimensional network in (II).  相似文献   

10.
The luminescent and mesomorphic properties of a series of metal complexes based on hexacatenar 2,2′:6′,2′′‐terpyridines are investigated using experimental methods and density functional theory (DFT). Two types of ligand are examined, namely 5,5′′‐di(3,4,5‐trialkoxyphenyl)terpyridine with or without a fused cyclopentene ring on each pyridine and their complexes were prepared with the following transition metals: ZnII, CoIII, RhIII, IrIII, EuIII and DyIII. The exact geometry of some of these complexes was determined by single X‐ray diffraction. All complexes with long alkyl chains were found to be liquid crystalline, which property was induced on complexation. The liquid‐crystalline behaviour of the complexes was studied by polarising optical microscopy and small‐angle X‐ray diffraction. Some of the transition metal complexes (for example, those with ZnII and IrIII) are luminescent in solution, the solid state and the mesophase; their photophysical properties were studied both experimentally and using DFT methods (M06‐2X and B3LYP).  相似文献   

11.
In the title compound, [Pb(ClO4)2(C15H11N3)]n, two molecules occupy general positions while the third lies on a crystallographic twofold axis, giving a total of two and a half molecules per asymmetric unit. Each metal centre is coordinated equatorially by three 2,2′:6′,2′′‐terpyridine (terpy) N‐donor atoms and axially by two perchlorate O‐donor atoms. The distorted pentagonal bipyramidal geometry is completed by two equatorial O‐donor atoms from two perchlorate anions which bridge to two different adjacent metal centres. The coordination about each metal centre is very similar to that seen at the unique PbII centre in the previously published polymorph [Engelhardt, Harrowfield, Miyamae, Patrick, Skelton, Soudi & White (1996). Aust. J. Chem. 49 , 1135–1146], but the new polymorph differs from it by the insertion on each side of an existing [bis(perchlorato)(terpy)lead(II)] molecule of two additional such units. Pairs of asymmetrically bridging perchlorate anions link irregularly spaced PbII centres into undulating chains parallel to [201] which exhibit a repeat distance of 26.280 (4) Å. The significance of this new polymorph lies in the fact that, while it is chemically identical to the known polymorph, it is structurally distinct from it.  相似文献   

12.
Two new layered complexes with the formulas of {[Cu(H2O)(HL)2Cl](NO3)}n ( 1 ) and {[Cu(H2O)2(HL)2](NO3)2}n ( 2 ) were solvothermally synthesized by the reactions of the bulky conjugated 4′‐(4‐hydroxyphenyl)‐4,2′:6′,4′′‐terpyridine ligand (HL) with different CuII salts, which were further used as photocatalysts to achieve hydrogen production from water splitting. Single‐crystal structural analyses reveal that both complexes feature coplanar (4 4) layers with different connection manners between the HL extended Z‐shaped chains. More interestingly, 1 possessing more negative conduction band potential and higher structural stability exhibits a large hydrogen production rate of 2.43 mmol · g–1 · h–1, which is four times higher than that of 2 . Thus, the CuII‐based coordination polymers modified by the bulky conjugated organic ligand can become potentially promising non‐Pt photocatalysts for hydrogen production from water splitting.  相似文献   

13.
The crystal structure of the title compound, [CoCl(C18H37N4O2){ZnCl3}], has been determined by X‐ray diffraction.Cmeso‐5,5,7,12,12,14‐Hexa­methyl‐1,4,8,11‐tetra­aza­cyclotetradecane‐N‐acetate acts as a bridging ligand to coodinate with CoIII and ZnII ions. The CoIII ion is six‐coordinate in a nearly octahedral environment provided by one Cl atom, four N atoms of the bridging ligand, and one O atom. The ZnII ion is four‐coordinate in a distorted tetrahedral environment completed by three Cl atoms and an O atom of the bridging ligand.  相似文献   

14.
The title complex, [Ni2Cl4(C22H17N3)2], was synthesized solvothermally. The molecule is a centrosymmetric dimer with the unique NiII centre in a distorted octahedral N3Cl3 coordination environment. The chloride bridges are highly asymmetric. In the 4′‐p‐tolyl‐2,2′:6′,2′′‐terpyridine ligand, the p‐tolyl group is perfectly coplanar with the attached pyridine ring, and this differs from the situation found in previously reported compounds; however, there are no π–π interactions between the ligands. The terminal Cl atom forms four intermolecular C—H...Cl hydrogen bonds with one methyl and three methine groups. The methyl group also forms intermolecular C—H...π interactions with a pyridine ring. These nonclassical hydrogen bonds extend the molecule into a three‐dimensional network.  相似文献   

15.
A metal–organic framework with a novel topology, poly[sesqui(μ2‐4,4′‐bipyridine)bis(dimethylformamide)bis(μ4‐4,4′,4′′‐nitrilotribenzoato)trizinc(II)], [Zn3(C21H12NO6)2(C10H8N2)1.5(C3H7NO)2]n, was obtained by the solvothermal method using 4,4′,4′′‐nitrilotribenzoic acid and 4,4′‐bipyridine (bipy). The structure, determined by single‐crystal X‐ray diffraction analysis, possesses three kinds of crystallographically independent ZnII cations, as well as binuclear Zn2(COO)4(bipy)2 paddle‐wheel clusters, and can be reduced to a novel topology of a (3,3,6)‐connected 3‐nodal net, with the Schläfli symbol {5.62}4{52.6}4{58.87} according to the topological analysis.  相似文献   

16.
A new coordination polymer, catena‐poly[[(dipyrido[3,2‐a:2′,3′‐c]phenazine‐κ2N,N′)nickel(II)]‐μ‐2,6‐dipicolinato‐κ4O2,N,O6:O2′], [Ni(C7H3NO4)(C18H10N4)]n, exhibits a one‐dimensional structure in which 2,6‐dipicolinate acts as a bridging ligand interconnecting adjacent nickel(II) centers to form a chain structure. The asymmetric unit contains one NiII center, one dipyrido[3,2‐a:2′,3′‐c]phenazine ligand and one 2,6‐dipicolinate ligand. Each NiII center is six‐coordinated and surrounded by three N atoms and three O atoms from one dipyrido[3,2‐a:2′,3′‐c]phenazine ligand and two different 2,6‐dipicolinate ligands, leading to a distorted octahedral geometry. Adjacent chains are linked by π–π stacking interactions and weak interactions to form a three‐dimensional supramolecular network.  相似文献   

17.
4′‐Substituted derivatives of 2,2′:6′,2′′‐terpyridine with N‐containing heteroaromatic substituents, such as pyridyl groups, might be able to coordinate metal centres through the extra N‐donor atom, in addition to the chelating terpyridine N atoms. The incorporation of these peripheral N‐donor sites would also allow for the diversification of the types of noncovalent interactions present, such as hydrogen bonding and π–π stacking. The title compound, C24H16N4, consists of a 2,2′:6′,2′′‐terpyridine nucleus (tpy), with a pendant isoquinoline group (isq) bound at the central pyridine (py) ring. The tpy nucleus deviates slightly from planarity, with interplanar angles between the lateral and central py rings in the range 2.24 (7)–7.90 (7)°, while the isq group is rotated significantly [by 46.57 (6)°] out of this planar scheme, associated with a short Htpy…Hisq contact of 2.32 Å. There are no strong noncovalent interactions in the structure, the main ones being of the π–π and C—H…π types, giving rise to columnar arrays along [001], further linked by C—H…N hydrogen bonds into a three‐dimensional supramolecular structure. An Atoms In Molecules (AIM) analysis of the noncovalent interactions provided illuminating results, and while confirming the bonding character for all those interactions unquestionable from a geometrical point of view, it also provided answers for some cases where geometric parameters are not informative, in particular, the short Htpy…Hisq contact of 2.32 Å to which AIM ascribed an attractive character.  相似文献   

18.
The asymmetric unit of the title two‐dimensional coordination polymer, [Co2(C16H6O8)(C14H14N4)2]n, contains one Co2+ ion, half of a biphenyl‐3,3′,4,4′‐tetracarboxylate (bptc) anion lying about an inversion centre and one 1,4‐bis(imidazol‐1‐ylmethyl)benzene (bix) ligand. The CoII atom is coordinated by three carboxylate O atoms from two different bptc ligands and two N atoms from two bix ligands constructing a distorted square pyramid. Each Co2+ ion is interlinked by two bptc anions, while each bptc anion coordinates to four Co atoms as a hexadentate ligand so that four CoII atoms and four bptc anions afford a larger 38‐membered ring. These inorganic rings are further extended into a two‐dimensional undulated network in the (10) plane. Two CoII atoms in adjacent 38‐membered rings are joined together by pairs of bix ligands forming a 26‐membered [Co2(bix)2] ring that is penetrated by a bptc anion; these components share a common inversion centre.  相似文献   

19.
The reaction of 2,2′:6′,2′′‐terpyridine (terpy) with CuCl2 in the presence of sodium sulfite led to the synthesis of the ionic complex aquachlorido(2,2′:6′,2′′‐terpyridyl‐κ3N,N′,N′′)copper(II) chlorido(dithionato‐κO)(2,2′:6′,2′′‐terpyridyl‐κ3N,N′,N′′)cuprate(II) dihydrate, [CuCl(C15H11N3)(H2O)][CuCl(S2O6)(C15H11N3)]·2H2O, (I), and the in situ synthesis of the S2O62− dianion. Compound (I) is composed of a [CuCl(terpy)(H2O)]+ cation, a [Cu(S2O6)(terpy)] anion and two solvent water molecules. Thermogravimetric analysis indicated the loss of two water molecules at ca 363 K, and at 433 K the weight loss indicated a total loss of 2.5 water molecules. The crystal structure analysis of the resulting pale‐green dried crystals, μ‐dithionato‐κ2O:O′‐bis[chlorido(2,2′:6′,2′′‐terpyridyl‐κ3N,N′,N′′)copper(II)] monohydrate, [Cu2Cl2(S2O6)(C15H11N3)2]·H2O, (II), revealed a net loss of 1.5 water molecules and the formation of a binuclear complex with two [CuCl(terpy)]+ cations bridged by a dithionate dianion. The crystal‐to‐crystal transformation involved an effective reduction in the unit‐cell volume of ca 7.6%. In (I), the ions are linked by O—H...O hydrogen bonds involving the coordinated and solvent water molecules and O atoms of the dithionate unit, to form ribbon‐like polymer chains propagating in [100]. These chains are linked by Cu...Cl interactions [3.2626 (7) Å in the cation and 3.3492 (7) Å in the anion] centred about inversion centres, to form two‐dimensional networks lying in and parallel to (01). In (II), symmetry‐related molecules are linked by O—H...O hydrogen bonds involving the partially occupied disordered water molecule and an O atom of the bridging thiosulfite anion, to form ribbon‐like polymer chains propagating in [100]. These chains are also linked by Cu...Cl interactions [3.3765 (12) Å] centred about inversion centres to form similar two‐dimensional networks to (I) lying in and parallel to (02), crosslinked into three dimensions by C—H...O=S and C—H...O(water) interactions.  相似文献   

20.
We report herein the synthesis, crystallographic analysis and a study of the noncovalent interactions observed in the new 4′‐substituted terpyridine‐based derivative bis[4′‐(isoquinolin‐2‐ium‐4‐yl)‐2,2′:6′,2′′‐terpyridine‐1,1′′‐diium] tris[tetrachloridozincate(II)] monohydrate, (C24H19N4)2[ZnCl4]3·H2O or (ITPH3)2[ZnCl4]3·H2O, where (ITPH3)3+ is the triply protonated cation derived from 4′‐(isoquinolin‐4‐yl)‐2,2′:6′,2′′‐terpyridine (ITP) [Granifo et al. (2016). Acta Cryst. C 72 , 932–938]. The (ITPH3)3+ cation presents a number of interesting similarities and differences compared with its neutral ITP relative, mainly in the role fulfilled in the packing arrangement by the profuse set of D —H…A [D (donor) = C, N or O; A (acceptor) = O or Cl], π–π and anion…π noncovalent interactions present. We discuss these interactions in two different complementary ways, viz. using a point‐to‐point approach in the light of Bader's theory of Atoms In Molecules (AIM), analyzing the individual significance of each interaction, and in a more `global' analysis, making use of the Hirshfeld surfaces and the associated enrichment ratio (ER) approach, evaluating the surprisingly large co‐operative effect of the superabundant weaker contacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号