首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The structures of ammonium 3,5‐dinitrobenzoate, NH4+·C7H3N2O6, (I), ammonium 4‐nitrobenzoate dihydrate, NH4+·C7H4NO4·2H2O, (II), and ammonium 2,4‐dichlorobenzoate hemihydrate, NH4+·C7H3Cl2O2·0.5H2O, (III), have been determined and their hydrogen‐bonded structures are described. All three salts form hydrogen‐bonded polymeric structures, viz. three‐dimensional in (I) and two‐dimensional in (II) and (III). With (I), a primary cation–anion cyclic association is formed [graph set R43(10)] through N—H...O hydrogen bonds, involving a carboxylate group with both O atoms contributing to the hydrogen bonds (denoted O,O′‐carboxylate) on one side and a carboxylate group with one O atom involved in two hydrogen bonds (denoted O‐carboxylate) on the other. Structure extension involves N—H...O hydrogen bonds to both carboxylate and nitro O‐atom acceptors. With structure (II), the primary inter‐species interactions and structure extension into layers lying parallel to (001) are through conjoined cyclic hydrogen‐bonding motifs, viz.R43(10) (one cation, an O,O′‐carboxylate group and two water molecules) and centrosymmetric R42(8) (two cations and two water molecules). The structure of (III) also has conjoined R43(10) and centrosymmetric R42(8) motifs in the layered structure but these differ in that the first motif involves one cation, an O,O′‐carboxylate group, an O‐carboxylate group and one water molecule, and the second motif involves two cations and two O‐carboxylate groups. The layers lie parallel to (100). The structures of salt hydrates (II) and (III), displaying two‐dimensional layered arrays through conjoined hydrogen‐bonded nets, provide further illustration of a previously indicated trend among ammonium salts of carboxylic acids, but the anhydrous three‐dimensional structure of (I) is inconsistent with that trend.  相似文献   

2.
The crystal structures of the title compounds, ammonium risedronate dihydrate, NH4+·C7H10NO7P2·2H2O, (I), and potassium risedronate dihydrate, K+·C7H10NO7P2·2H2O, (II), have been determined from single‐crystal X‐ray data collected at 120 K. Compound (I) forms a three‐dimensional hydrogen‐bonded network which connects the ammonium and risedronate ions and the water mol­ecules. In compound (II), the K+ ions are seven‐coordinated in a capped distorted trigonal prism. The coordination polyhedra form chains by corner‐sharing, and these chains are connected by phosphon­ate groups into layers in the ac plane. The layers are stacked and connected by hydrogen bonds in the b direction. The risedronate conformation is determined by intra­molecular inter­actions fine‐tuned by crystal packing effects. All H‐atom donors in both structures are involved in hydrogen bonding, with DA distances between 2.510 (2) and 3.009 (2) Å.  相似文献   

3.
The structures of two ammonium salts of 3‐carboxy‐4‐hydroxybenzenesulfonic acid (5‐sulfosalicylic acid, 5‐SSA) have been determined at 200 K. In the 1:1 hydrated salt, ammonium 3‐carboxy‐4‐hydroxybenzenesulfonate monohydrate, NH4+·C7H5O6S·H2O, (I), the 5‐SSA monoanions give two types of head‐to‐tail laterally linked cyclic hydrogen‐bonding associations, both with graph‐set R44(20). The first involves both carboxylic acid O—H...Owater and water O—H...Osulfonate hydrogen bonds at one end, and ammonium N—H...Osulfonate and N—H...Ocarboxy hydrogen bonds at the other. The second association is centrosymmetric, with end linkages through water O—H...Osulfonate hydrogen bonds. These conjoined units form stacks down c and are extended into a three‐dimensional framework structure through N—H...O and water O—H...O hydrogen bonds to sulfonate O‐atom acceptors. Anhydrous triammonium 3‐carboxy‐4‐hydroxybenzenesulfonate 3‐carboxylato‐4‐hydroxybenzenesulfonate, 3NH4+·C7H4O6S2−·C7H5O6S, (II), is unusual, having both dianionic 5‐SSA2− and monoanionic 5‐SSA species. These are linked by a carboxylic acid O—H...O hydrogen bond and, together with the three ammonium cations (two on general sites and the third comprising two independent half‐cations lying on crystallographic twofold rotation axes), give a pseudo‐centrosymmetric asymmetric unit. Cation–anion hydrogen bonding within this layered unit involves a cyclic R33(8) association which, together with extensive peripheral N—H...O hydrogen bonding involving both sulfonate and carboxy/carboxylate acceptors, gives a three‐dimensional framework structure. This work further demonstrates the utility of the 5‐SSA monoanion for the generation of stable hydrogen‐bonded crystalline materials, and provides the structure of a dianionic 5‐SSA2− species of which there are only a few examples in the crystallographic literature.  相似文献   

4.
The structure of 1‐benzofuran‐2,3‐dicarboxylic acid (BFDC), C10H6O5, (I), exhibits an intramolecular hydrogen bond between one –COOH group and the other, while the second carboxyl function is involved in intermolecular hydrogen bonding to neighbouring species. The latter results in the formation of flat one‐dimensional hydrogen‐bonded chains in the crystal structure, which are π–π stacked along the normal to the plane of the molecular framework, forming a layered structure. 1:1 Cocrystallization of BFDC with pyridine, phenazine and 1,4‐phenylenediamine is associated with H‐atom transfer from BFDC to the base and charge‐assisted hydrogen bonding between the BFDC monoanion and the corresponding ammonium species, while preserving, in all cases, the intramolecular hydrogen bond between the carboxyl and carboxylate functions. The pyridinium 2‐carboxylato‐1‐benzofuran‐3‐carboxylic acid, C5H6N+·C10H5O5, (II), and phenazinium 3‐carboxylato‐1‐benzofuran‐2‐carboxylic acid, C12H9N2+·C10H5O5, (III), adducts form discrete hydrogen‐bonded ion‐pair entities. In the corresponding crystal structures, the two components are arranged in either segregated or mixed π–π stacks, respectively. On the other hand, the structure of 4‐aminoanilinium 2‐carboxylato‐1‐benzofuran‐3‐carboxylic acid, C6H9N2+·C10H5O5, (IV), exhibits an intermolecular hydrogen‐bonding network with three‐dimensional connectivity. Moreover, this fourth structure exhibits induction of supramolecular chirality by the extended hydrogen bonding, leading to a helical arrangement of the interacting moieties around 21 screw axes. The significance of this study is that it presents the first crystallographic characterization of pure BFDC, and manifestation of its cocrystallization with a variety of weakly basic amine molecules. It confirms the tendency of BFDC to preserve its intramolecular hydrogen bond and to prefer a monoanionic form in supramolecular association with other components. The aromaticity of the flat benzofuran residue plays an important role in directing either homo‐ or heteromolecular π–π stacking in the first three structures, while the occurrence of a chiral architecture directed by multiple hydrogen bonding is the dominant feature in the fourth.  相似文献   

5.
The 100 K structures of two salts, namely 2‐amino‐1H‐benzimidazolium 3‐phenylpropynoate, C7H8N3+·C9H5O2, (I), and 2‐amino‐1H‐benzimidazolium oct‐2‐ynoate, C7H8N3+·C8H11O2, (II), both have monoclinic symmetry (space group P21/c) and display N—H...O hydrogen bonding. Both structures show packing with corrugated sheets of hydrogen‐bonded molecules lying parallel to the [001] direction. Two hydrogen‐bonded ring motifs can be identified and described with graph sets R22(8) and R44(16), respectively, in both (I) and (II). Computational chemistry calculations performed on both compounds show that the hydrogen‐bonded ion pairs are more energetically favourable in the crystal structure than their hydrogen–bonded neutral molecule counterparts.  相似文献   

6.
The structures of two brucinium (2,3‐dimeth­oxy‐10‐oxostrychnidinium) salts of the α‐hydr­oxy acids l ‐malic acid and l ‐tartaric acid, namely brucinium hydrogen (S)‐malate penta­hydrate, C23H27N2O4+·C4H5O5·5H2O, (I), and anhydrous brucinium hydrogen (2R,3R)‐tartrate, C23H27N2O4+·C4H5O6,(II), have been determined at 130 K. Compound (I) has two brucinium cations, two hydrogen malate anions and ten water mol­ecules of solvation in the asymmetric unit, and forms an extensively hydrogen‐bonded three‐dimensional framework structure. In compound (II), the brucinium cations form the common undulating brucine sheet substructures, which accommodate parallel chains of head‐to‐tail hydrogen‐bonded tartrate anion species in the inter­stitial cavities.  相似文献   

7.
The structures of 4‐nitrobenzene‐1,2‐diamine [C6H7N3O2, (I)], 2‐amino‐5‐nitroanilinium chloride [C6H8N3O2+·Cl, (II)] and 2‐amino‐5‐nitroanilinium bromide monohydrate [C6H8N3O2+·Br·H2O, (III)] are reported and their hydrogen‐bonded structures described. The amine group para to the nitro group in (I) adopts an approximately planar geometry, whereas the meta amine group is decidedly pyramidal. In the hydrogen halide salts (II) and (III), the amine group meta to the nitro group is protonated. Compound (I) displays a pleated‐sheet hydrogen‐bonded two‐dimensional structure with R22(14) and R44(20) rings. The sheets are joined by additional hydrogen bonds, resulting in a three‐dimensional extended structure. Hydrohalide salt (II) has two formula units in the asymmetric unit that are related by a pseudo‐inversion center. The dominant hydrogen‐bonding interactions involve the chloride ion and result in R42(8) rings linked to form a ladder‐chain structure. The chains are joined by N—H...Cl and N—H...O hydrogen bonds to form sheets parallel to (010). In hydrated hydrohalide salt (III), bromide ions are hydrogen bonded to amine and ammonium groups to form R42(8) rings. The water behaves as a double donor/single acceptor and, along with the bromide anions, forms hydrogen bonds involving the nitro, amine, and ammonium groups. The result is sheets parallel to (001) composed of alternating R55(15) and R64(24) rings. Ammonium N—H...Br interactions join the sheets to form a three‐dimensional extended structure. Energy‐minimized structures obtained using DFT and MP2 calculations are consistent with the solid‐state structures. Consistent with (II) and (III), calculations show that protonation of the amine group meta to the nitro group results in a structure that is about 1.5 kJ mol−1 more stable than that obtained by protonation of the para‐amine group. DFT calculations on single molecules and hydrogen‐bonded pairs of molecules based on structural results obtained for (I) and for 3‐nitrobenzene‐1,2‐diamine, (IV) [Betz & Gerber (2011). Acta Cryst. E 67 , o1359] were used to estimate the strength of the N—H...O(nitro) interactions for three observed motifs. The hydrogen‐bonding interaction between the pairs of molecules examined was found to correspond to 20–30 kJ mol−1.  相似文献   

8.
All three title compounds, C4H7N2+·C4H5O4, (I), C4H7N2+·C5H7O4, (II), and C4H7N2+·C6H9O4·H2O, (III), can be regarded as 1:1 organic salts. The dicarboxylic acids join through short acid bridges into infinite chains. Compound (I) crystallizes in the noncentrosymmetric Cmc21 space group and the asymmetric unit consists of a hydrogen succinate anion located on a mirror plane and a 2‐methylimidazolium cation disordered across the same mirror. The other two compounds crystallize in the triclinic P space group. The carboxylic acid H atom in (II) is disordered over both ends of the anion and sits on inversion centres between adjacent anions, forming symmetric short O...H...O bridges. Two independent anions in (III) sit across inversion centres, again with the carboxylic acid H atom disordered in short O...H...O bridges. The molecules in all three compounds are linked into two‐dimensional networks by combinations of imidazolium–carboxylate N+—H...O and carboxylate–carboxylate O—H...O hydrogen bonds. The two‐dimensional networks are further linked into three‐dimensional networks by C—H...O hydrogen bonds in (I) and by Owater—H...O hydrogen bonds in (III). According to the ΔpKa rule, such 1:1 types of organic salts can be expected unambiguously. However, a 2:1 type of organic salt may be more easily obtained in (II) and (III) than in (I).  相似文献   

9.
A fixed hydrogen‐bonding motif with a high probability of occurring when appropriate functional groups are involved is described as a `supramolecular hydrogen‐bonding synthon'. The identification of these synthons may enable the prediction of accurate crystal structures. The rare chiral hydrogen‐bonding motif R53(10) was observed previously in a cocrystal of 2,4,6‐trichlorophenol, 2,4‐dichlorophenol and dicyclohexylamine. In the title solvated salt, 2C4H12N+·C6H3Cl2O·(C6H3Cl2O·C6H4Cl2O)·2C4H8O, five components, namely two tert‐butylammonium cations, one 2,4‐dichlorophenol molecule, one 2,4‐dichlorophenolate anion and one 2,6‐dichlorophenolate anion, are bound by N—H…O and O—H…O hydrogen bonds to form a hydrogen‐bonded ring, with the graph‐set motif R53(10), which is further associated with two pendant tetrahydrofuran molecules by N—H…O hydrogen bonds. The hydrogen‐bonded ring has internal symmetry, with a twofold axis running through the centre of the 2,6‐dichlorophenolate anion, and is isostructural with a previous and related structure formed from 2,4‐dichlorophenol, dicyclohexylamine and 2,4,6‐trichlorophenol. In the title crystal, helical columns are built by the alignment and twisting of the chiral hydrogen‐bonded rings, along and across the c axis, and successive pairs of rings are associated with each other through C—H…π interactions. Neighbouring helical columns are inversely related and, therefore, no chirality is sustained, in contrast to the previous case.  相似文献   

10.
The crystal structures of two (E)‐stilbazolium salts, namely 1‐(2‐chlorobenzyl)‐4‐[(E)‐2‐(3‐hydroxyphenyl)ethenyl]pyridinium chloride hemihydrate, C20H17ClNO+·Cl·0.5H2O, (I), and 1‐(2‐bromobenzyl)‐4‐[(E)‐2‐(3‐hydroxyphenyl)ethenyl]pyridinium bromide hemihydrate, C20H17BrNO+·Br·0.5H2O, (II), are isomorphous; the isostructurality index is 99.3%. In both salts, the azastyryl fragments are almost planar, while the rings of the benzyl groups are almost perpendicular to the azastyryl planes. The building blocks of the structures are twofold symmetric hydrogen‐bonded systems of two cations, two halide anions and one water molecule, which lies on a twofold axis. In the crystal structure, these blocks are connected by means of weaker interactions, viz. van der Waals, weak hydrogen bonding and stacking. This study illustrates the robustness of certain supramolecular motifs created by a spectrum of intermolecular interactions in generating these isomorphous crystal structures.  相似文献   

11.
The structures of the first two organic carboxylate salts of 1‐(diaminomethylene)thiourea (HATU), namely 1‐(diaminomethylene)thiouron‐1‐ium formate, C2H7N4S+·HCOO, (I), and bis[1‐(diaminomethylene)thiouron‐1‐ium] oxalate dihydrate, 2C2H7N4S+·C2O42−·2H2O, (II), in which the oxalate lies on a symmetry centre, possess different extended hydrogen‐bonding networks with different graph‐set motifs. The R22(8) motif present in (I) does not appear in (II), but an R21(6) motif is present in both (I) and (II). Compound (I) has a three‐dimensional hydrogen‐bonding network, whereas (II) has a layered structure with layers joined by hydrogen‐bonding motifs that form R42(8) patterns. This work extends the known supramolecular structural data for HATU to include these organic carboxylates in addition to the previously characterized salts with inorganic acids.  相似文献   

12.
The structures of the 1:1 proton‐transfer compounds of 4,5‐dichlorophthalic acid with 8‐hydroxyquinoline, 8‐aminoquinoline and quinoline‐2‐carboxylic acid (quinaldic acid), namely anhydrous 8‐hydroxyquinolinium 2‐carboxy‐4,5‐dichlorobenzoate, C9H8NO+·C8H3Cl2O4, (I), 8‐aminoquinolinium 2‐carboxy‐4,5‐dichlorobenzoate, C9H9N2+·C8H3Cl2O4, (II), and the adduct hydrate 2‐carboxyquinolinium 2‐carboxy‐4,5‐dichlorobenzoate quinolinium‐2‐carboxylate monohydrate, C10H8NO2+·C8H3Cl2O4·C10H7NO2·H2O, (III), have been determined at 130 K. Compounds (I) and (II) are isomorphous and all three compounds have one‐dimensional hydrogen‐bonded chain structures, formed in (I) through O—H...Ocarboxyl extensions and in (II) through N+—H...Ocarboxyl extensions of cation–anion pairs. In (III), a hydrogen‐bonded cyclic R22(10) pseudo‐dimer unit comprising a protonated quinaldic acid cation and a zwitterionic quinaldic acid adduct molecule is found and is propagated through carboxylic acid O—H...Ocarboxyl and water O—H...Ocarboxyl interactions. In both (I) and (II), there are also cation–anion aromatic ring π–π associations. This work further illustrates the utility of both hydrogen phthalate anions and interactive‐group‐substituted quinoline cations in the formation of low‐dimensional hydrogen‐bonded structures.  相似文献   

13.
The 1:1 proton‐transfer compounds of l ‐tartaric acid with 3‐aminopyridine [3‐aminopyridinium hydrogen (2R,3R)‐tartrate dihydrate, C5H7N2+·C4H5O6·2H2O, (I)], pyridine‐3‐carboxylic acid (nicotinic acid) [anhydrous 3‐carboxypyridinium hydrogen (2R,3R)‐tartrate, C6H6NO2+·C4H5O6, (II)] and pyridine‐2‐carboxylic acid [2‐carboxypyridinium hydrogen (2R,3R)‐tartrate monohydrate, C6H6NO2+·C4H5O6·H2O, (III)] have been determined. In (I) and (II), there is a direct pyridinium–carboxyl N+—H...O hydrogen‐bonding interaction, four‐centred in (II), giving conjoint cyclic R12(5) associations. In contrast, the N—H...O association in (III) is with a water O‐atom acceptor, which provides links to separate tartrate anions through Ohydroxy acceptors. All three compounds have the head‐to‐tail C(7) hydrogen‐bonded chain substructures commonly associated with 1:1 proton‐transfer hydrogen tartrate salts. These chains are extended into two‐dimensional sheets which, in hydrates (I) and (III) additionally involve the solvent water molecules. Three‐dimensional hydrogen‐bonded structures are generated via crosslinking through the associative functional groups of the substituted pyridinium cations. In the sheet struture of (I), both water molecules act as donors and acceptors in interactions with separate carboxyl and hydroxy O‐atom acceptors of the primary tartrate chains, closing conjoint cyclic R44(8), R34(11) and R33(12) associations. Also, in (II) and (III) there are strong cation carboxyl–carboxyl O—H...O hydrogen bonds [O...O = 2.5387 (17) Å in (II) and 2.441 (3) Å in (III)], which in (II) form part of a cyclic R22(6) inter‐sheet association. This series of heteroaromatic Lewis base–hydrogen l ‐tartrate salts provides further examples of molecular assembly facilitated by the presence of the classical two‐dimensional hydrogen‐bonded hydrogen tartrate or hydrogen tartrate–water sheet substructures which are expanded into three‐dimensional frameworks via peripheral cation bifunctional substituent‐group crosslinking interactions.  相似文献   

14.
The Schiff base enaminones (3Z)‐4‐(5‐ethylsulfonyl‐2‐hydroxyanilino)pent‐3‐en‐2‐one, C13H17NO4S, (I), and (3Z)‐4‐(5‐tert‐butyl‐2‐hydroxyanilino)pent‐3‐en‐2‐one, C15H21NO2, (II), were studied by X‐ray crystallography and density functional theory (DFT). Although the keto tautomer of these compounds is dominant, the O=C—C=C—N bond lengths are consistent with some electron delocalization and partial enol character. Both (I) and (II) are nonplanar, with the amino–phenol group canted relative to the rest of the molecule; the twist about the N(enamine)—C(aryl) bond leads to dihedral angles of 40.5 (2) and −116.7 (1)° for (I) and (II), respectively. Compound (I) has a bifurcated intramolecular hydrogen bond between the N—H group and the flanking carbonyl and hydroxy O atoms, as well as an intermolecular hydrogen bond, leading to an infinite one‐dimensional hydrogen‐bonded chain. Compound (II) has one intramolecular hydrogen bond and one intermolecular C=O...H—O hydrogen bond, and consequently also forms a one‐dimensional hydrogen‐bonded chain. The DFT‐calculated structures [in vacuo, B3LYP/6‐311G(d,p) level] for the keto tautomers compare favourably with the X‐ray crystal structures of (I) and (II), confirming the dominance of the keto tautomer. The simulations indicate that the keto tautomers are 20.55 and 18.86 kJ mol−1 lower in energy than the enol tautomers for (I) and (II), respectively.  相似文献   

15.
The structures of the anhydrous 1:1 proton‐transfer compounds of 4,5‐dichlorophthalic acid (DCPA) with the monocyclic heteroaromatic Lewis bases 2‐aminopyrimidine, 3‐(aminocarbonyl)pyridine (nicotinamide) and 4‐(aminocarbonyl)pyridine (isonicotinamide), namely 2‐aminopyrimidinium 2‐carboxy‐4,5‐dichlorobenzoate, C4H6N3+·C8H3Cl2O4, (I), 3‐(aminocarbonyl)pyridinium 2‐carboxy‐4,5‐dichlorobenzoate, C6H7N2O+·C8H3Cl2O4, (II), and the unusual salt adduct 4‐(aminocarbonyl)pyridinium 2‐carboxy‐4,5‐dichlorobenzoate–methyl 2‐carboxy‐4,5‐dichlorobenzoate (1/1), C6H7N2O+·C8H3Cl2O4·C9H6Cl2O4, (III), have been determined at 130 K. Compound (I) forms discrete centrosymmetric hydrogen‐bonded cyclic bis(cation–anion) units having both R22(8) and R12(4) N—H...O interactions. In (II), the primary N—H...O‐linked cation–anion units are extended into a two‐dimensional sheet structure via amide–carboxyl and amide–carbonyl N—H...O interactions. The structure of (III) reveals the presence of an unusual and unexpected self‐synthesized methyl monoester of the acid as an adduct molecule, giving one‐dimensional hydrogen‐bonded chains. In all three structures, the hydrogen phthalate anions are essentially planar with short intramolecular carboxyl–carboxylate O—H...O hydrogen bonds [O...O = 2.393 (8)–2.410 (2) Å]. This work provides examples of low‐dimensional 1:1 hydrogen‐bonded DCPA structure types, and includes the first example of a discrete cyclic `heterotetramer.' This low dimensionality in the structures of the 1:1 aromatic Lewis base salts of the parent acid is generally associated with the planar DCPA anion species.  相似文献   

16.
Crystals of bis(2‐ethyl‐3‐hydroxy‐6‐methylpyridinium) succinate–succinic acid (1/1), C8H12NO+·0.5C4H4O42−·0.5C4H6O4, (I), and 2‐ethyl‐3‐hydroxy‐6‐methylpyridinium hydrogen succinate, C8H12NO+·C4H5O4, (II), were obtained by reaction of 2‐ethyl‐6‐methylpyridin‐3‐ol with succinic acid. The succinate anion and succinic acid molecule in (I) are located about centres of inversion. Intermolecular O—H...O, N—H...O and C—H...O hydrogen bonds are responsible for the formation of a three‐dimensional network in the crystal structure of (I) and a two‐dimensional network in the crystal structure of (II). Both structures are additionally stabilized by π–π interactions between symmetry‐related pyridine rings, forming a rod‐like cationic arrangement for (I) and cationic dimers for (II).  相似文献   

17.
In the title compounds, 4‐aminopyridinium 4‐aminobenzoate dihydrate, C7H6NO2·C5H7N2+·2H2O, (I), and 4‐aminopyridinium nicotinate, C5H7N2+·C6H4NO2, (II), the aromatic N atoms of the 4‐aminopyridinium cations are protonated. In (I), the asymmetric unit is composed of two 4‐aminopyridinium cations, two 4‐aminobenzoate anions and four water molecules, and the compound crystallizes in a noncentrosymmetric space group. The two sets of independent molecules of (I) are related by a centre of symmetry which is not part of the space group. In (I), the protonated pyridinium ring H atoms are involved in bifurcated hydrogen bonding with carboxylate O atoms to form an R12(4) ring motif. The water molecules link the ions to form a two‐dimensional network along the (10) plane. In (II), an intramolecular bifurcated hydrogen bond generates an R12(4) ring motif and inter‐ion hydrogen bonding generates an R42(16) ring motif. The packing of adduct (II) is consolidated via N—H...O and N—H...N hydrogen bonds to form a two‐dimensional network along the (10) plane.  相似文献   

18.
The structures of two hydrated salts of 4‐aminophenylarsonic acid (p‐arsanilic acid), namely ammonium 4‐aminophenylarsonate monohydrate, NH4+·C6H7AsNO3·H2O, (I), and the one‐dimensional coordination polymer catena‐poly[[(4‐aminophenylarsonato‐κO)diaquasodium]‐μ‐aqua], [Na(C6H7AsNO3)(H2O)3]n, (II), have been determined. In the structure of the ammonium salt, (I), the ammonium cations, arsonate anions and water molecules interact through inter‐species N—H...O and arsonate and water O—H...O hydrogen bonds, giving the common two‐dimensional layers lying parallel to (010). These layers are extended into three dimensions through bridging hydrogen‐bonding interactions involving the para‐amine group acting both as a donor and an acceptor. In the structure of the sodium salt, (II), the Na+ cation is coordinated by five O‐atom donors, one from a single monodentate arsonate ligand, two from monodentate water molecules and two from bridging water molecules, giving a very distorted square‐pyramidal coordination environment. The water bridges generate one‐dimensional chains extending along c and extensive interchain O—H...O and N—H...O hydrogen‐bonding interactions link these chains, giving an overall three‐dimensional structure. The two structures reported here are the first reported examples of salts of p‐arsanilic acid.  相似文献   

19.
Six ammonium carboxylate salts, namely cyclopentylammonium cinnamate, C5H12N+·C9H7O2, (I), cyclohexylammonium cinnamate, C6H14N+·C9H7O2, (II), cycloheptylammonium cinnamate form I, C7H16N+·C9H7O2, (IIIa), and form II, (IIIb), cyclooctylammonium cinnamate, C8H18N+·C9H7O2, (IV), and cyclododecylammonium cinnamate, C12H26N+·C9H7O2, (V), are reported. Salts (II)–(V) all have a 1:1 ratio of cation to anion and feature three N+—H...O hydrogen bonds forming one‐dimensional hydrogen‐bonded columns consisting of repeating R43(10) rings, while salt (I) has a two‐dimensional network made up of alternating R44(12) and R68(20) rings. Salt (III) consists of two polymorphic forms, viz. form I having Z′ = 1 and form II with Z′ = 2. The latter polymorph has disorder of the cycloheptane rings in the two cations, as well as whole‐molecule disorder of one of the cinnamate anions. A similar, but ordered, Z′ = 2 structure is seen in salt (IV).  相似文献   

20.
The crystal structures of the 1:1 proton‐transfer compounds of 4,5‐dichlorophthalic acid with the three isomeric monoaminobenzoic acids, namely the hydrate 2‐carboxyanilinium 2‐carboxy‐4,5‐dichlorobenzoate dihydrate, C7H8NO2+·C8H3Cl2O4·2H2O, (I), and the anhydrous salts 3‐carboxyanilinium 2‐carboxy‐4,5‐dichlorobenzoate, C7H8NO2+·C8H3Cl2O4, (II), and 4‐carboxyanilinium 2‐carboxy‐4,5‐dichlorobenzoate, C7H8NO2+·C8H3Cl2O4, (III), have been determined at 130 K. Compound (I) has a two‐dimensional hydrogen‐bonded sheet structure, while (II) and (III) are three‐dimensional. All three compounds feature sheet substructures formed through anilinium N+—H...Ocarboxyl and anion carboxylic acid O—H...Ocarboxyl interactions and, in the case of (I), additionally linked through the donor and acceptor associations of the solvent water molecules. However, (II) and (III) have additional lateral extensions of these substructures though cyclic R22(8) associations involving the carboxylic acid groups of the cations. Also, (II) and (III) have cation–anion π–π aromatic ring interactions. This work provides further examples illustrating the regular formation of network substructures in the 1:1 proton‐transfer salts of 4,5‐dichlorophthalic acid with the bifunctional aromatic amines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号