首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Drug delivery systems (DDS) often comprise biopharmaceuticals in aqueous form, making them susceptible to physical and chemical degradation, and therefore requiring low temperature storage in cold supply and distribution chains. Freeze-drying, spray-drying, and spray-freeze-drying are some of the techniques used to convert biopharmaceuticals-loaded DDS from aqueous to solid dosage forms. However, the risk exists that shear and heat stress during processing may provoke DDS damage and efficacy loss. Supercritical fluids (SCF), specifically, supercritical carbon dioxide (scCO2), is a sustainable alternative to common techniques. Due to its moderately critical and tunable properties and thermodynamic behavior, scCO2 has aroused scientific and industrial interest. Therefore, this article reviews scCO2-based techniques used over the year in the production of solid biopharmaceutical dosage forms. Looking particularly at the use of scCO2 in each of its potential roles—as a solvent, co-solvent, anti-solvent, or co-solute. It ends with a comparison between the compound’s stability using supercritical CO2-assisted atomization/spray-drying and conventional drying.  相似文献   

2.
《中国化学快报》2020,31(10):2583-2590
Bi/semiconductor photocatalysts have extensively been applied in the production of hydrogen, CO2 reduction and environmental remediation in recent years. This short review summarizes the role of Bi metal as a plasma photocatalyst and cocatalyst. As a cocatalyst, Bi metal can be electron/hole trappers, charge transfer mediators, or oxygen vacancy coordinators. In addition, the preparation methods of the Bi/semiconductor photocatalysts are also reviewed. Challenges and future research directions related to Bi/semiconductor photocatalysts are discussed and summarized, including the use of advanced characterization techniques to refine the reaction mechanism, the difficulties of preparing Bi single atom catalyst, and the improvement of the reduction ability of Bi-based photocatalysts. This review helps understand the reaction mechanisms of the composite photocatalytic systems containing Bi metal and proposes new perspectives for designing the photocatalysts which can control air pollution via a reductive process.  相似文献   

3.
Current energy crisis and environmental issues, including depletion of fossil fuels, rapid industrialization, and undesired CO2 emission resulting in global warming has created havoc for the global population and significantly affected the quality of life. In this scenario the environmental problems in the forefront of research priorities. Development of renewable energy resources particularly the efficient conversion of solar light to sustainable energy is crucial in addressing environmental problems. In this regard, the synthesis of semiconductors-based photocatalysts has emerged as an effective tool for different photocatalytic applications and environmental remediation. Among different photocatalyst options available, graphene and graphene derivatives such as, graphene oxide (GO), highly reduced graphene oxide (HRG), and doped graphene (N, S, P, B-HRG) have become rising stars on the horizon of semiconductors-based photocatalytic applications. Graphene is a single layer of graphite consisting of a unique planar structure, high conductivity, greater electron mobility, and significantly very high specific surface area. Besides, the recent advancements in synthetic approaches have led to the cost-effective production of graphene-based materials on a large-scale. Therefore, graphene-based materials have gained considerable recognition for the production of semiconducting photocatalysts involving other semiconducting materials. The graphene-based semiconductors photocatalysts surpasses electron-holes pairs recombination rate and lowers the energy band gap by tailoring the valence band (VB) and conduction band (CB) leading to the enhanced photocatalytic performance of hybrid photocatalysts. Herein, we have summarized the latest developments in designing and fabrication of graphene-based semiconducting photocatalysts using a variety of commonly applied methods such as, post-deposition methods, in-situ binding methods, hydrothermal and/or solvothermal approaches. In addition, we will discuss the photocatalytic properties of the resulting graphene-based hybrid materials for various environmental remediation processes such as; (i) clean H2 fuel production, photocatalytic (ii) pollutants degradation, (iii) photo-redox organic transformation and (iv) photo-induced CO2 reduction. On the whole, by the inclusion of more than 300 references, this review possibly covered in detail the aspects of graphene-based semiconductor photocatalysts for environmental remediation processes. Finally, the review will conclude a short summary and discussion about future perspectives, challenges and new directions in these emerging areas of research.  相似文献   

4.
Lattice-doping and surface decoration are prospective routes to improve the visible-light photocatalytic ability of TiO2, but the two techniques are difficult to combine into one preparation process because they are usually conducted under different conditions, which limits the efficiency of TiO2 modification. In this study, TiO2 was successfully modified by simultaneous lattice-doping and surface decoration, and the visible-light photocatalytic capacity was largely improved. Upon comparing the method reported here with previous ones, the most significant difference is that Fe(II)-phenanthroline was first used as the co-precursor of the introduced elements of C, N, and Fe. These three elements were simultaneously introduced to TiO2 at high levels by this co-precursor method. The as-synthesized photocatalysts were systemically investigated and analyzed by several characterization methods such as XRD, FT-IR, XPS, Raman spectroscopy, EPR, UV-Vis DRS, photoluminescence spectra, photocurrent, electrochemical impedance spectra, TEM, and HRTEM. The photocatalytic degradation of 4-NP under visible-light irradiation was used to evaluate the photocatalytic activity of the photocatalysts. Based on the experimental data, a probable mechanism for the photocatalytic degradation by the photocatalysts is proposed. This is a novel method of using one source to simultaneously introduce metal and non-metal elements to TiO2 at high levels, which may provide a new way to prepare highly effective TiO2 photocatalysts.  相似文献   

5.
Semiconductor photocatalysis is considered to be one of the most promising technologies to solve the worldwide environmental and energy issues. In recent years, silver halide (AgX)-based photocatalytic materials have received increasing research attention owing to its excellent visible light-driven photocatalytic performances in the applications of organic pollutant degradation, H2/O2 generation, and disinfection. AgX-based materials used in photocatalytic fields can be classified into three categories: AgX (Ag/AgX), AgX composites, and supported AgX materials. For the AgX (Ag/AgX) photocatalysts, it has been widely accepted that the final photocatalytic performances of photocatalysts are severely dependent on their morphological structures as well as exposed crystal facets. As a result, considerable efforts have been devoted to fabricating different morphological AgX photocatalysts as well as exploring the relationship between the morphological structures and photocatalytic performances. In this review, we mainly introduce the recent developments made in fabricating morphology and facet-controllable AgX (Ag/AgX) photocatalytic materials. Moreover, this review also deals with the photocatalytic mechanism and applications of AgX (Ag/AgX) and supported AgX materials.  相似文献   

6.
Piroxicam (PRX) is a commonly prescribed nonsteroidal anti-inflammatory drug. Its efficacy, however, is partially limited by its low water solubility. In recent years, different studies have tackled this problem and have suggested delivering PRX through solid dispersions. All these strategies, however, involve the use of potentially harmful solvents for the loading procedure. Since piroxicam is soluble in supercritical CO2 (scCO2), the present study aims, for the first time, to adsorb PRX onto mesoporous silica using scCO2, which is known to be a safer and greener technique compared to the organic solvent-based ones. For comparison, PRX is also loaded by adsorption from solution and incipient wetness impregnation using ethanol as solvent. Two different commercial mesoporous silicas are used (SBA-15 and Grace Syloid® XDP), which differ in porosity order and surface silanol population. Physico-chemical analyses show that the most promising results are obtained through scCO2, which yields the amorphization of PRX, whereas some crystallization occurs in the case of adsorption from solution and IWI. The highest loading of PRX by scCO2 is obtained in SBA-15 (15 wt.%), where molecule distribution appears homogeneous, with very limited pore blocking.  相似文献   

7.
Localized surface plasmon resonance(LSPR) enhanced photocatalysis has fascinated much interest and considerable efforts have been devoted toward the development of plasmonic photocatalysts.In the past decades,noble metal nanoparticles(Au and Ag) with LSPR feature have found wide applications in solar energy conversion.Numerous metal-based photocatalysts have been proposed including metal/semiconductor heterostructures and plasmonic bimetallic or multimetallic nanostructures.However,high cost and...  相似文献   

8.
Zinc-doped and undoped TiO2 photocatalysts were synthesized via sol-gel techniques. Doping of TiO2 with M2+ (M-Zn) was intended to create tail states within the band gap of TiO2. These can subsequently be employed as efficient photocatalysts which can effectively decompose organic contaminants only with visible light activation. The structure, physico-chemical and optical properties of the products were characterized by using the X-ray diffraction (XRD), Raman spectra, UV-vis diffuse reflectance spectroscopy (DRS) and electrochemical impedance spectroscopy (EIS) techniques. Doping shifts the optical absorption edge to the visible region and decreases the charge-transfer resistance. Under visible light, the composite nanoparticles very efficiently catalyze the MB dye. Results implied that Zn doping increased photoinduced charge transfer rate, and the use of described methods is a powerful tool toward predicting and understanding the photocatalytic processes and behaviors.  相似文献   

9.
Recently, environmental disruption is proceeding on a global scale through the consumption of huge amounts of fossil fuels and the emission of various chemical substances. However, these substances resist bio-treatment. TiO2 generates electrons and holes by irradiation with light. Most organic micro-pollutants, including dioxins, are decomposed into carbon dioxide and water by the effect of the holes with high oxidative potential. By using such a photocatalytic reaction, various applications are feasible for environmental cleanup. In general, TiO2 powder has been utilized as photocatalyst, although TiO2 powder photocatalyst has several disadvantages: (1) it is difficult to handle, (2) photocatalytic reaction is slow and it takes a lot of time for treatment and (3) it is difficult to apply to plastics and textiles, because the photocatalyst decomposes them. We have developed a photocatalyst suitable for practical use and have developed high-activity photocatalysts such as TiO2 photocatalytic transparent film, photocatalytic silica-gel, apatite-coated TiO2 photocatalyst usable for plastics and textiles, photocatalytic paper, photocatalytic blue charcoal and photocatalytic oxygen scavenger. The application of these high-activity photocatalysts has been studied in deodorization, anti-bacterial, self-cleaning, anti-stain, water treatment, air purification such as photocatalytic decomposition of dioxins and VOC, and NO x removal. Now various photocatalytic articles using these new photocatalyst materials are on the market in Japan. Photocatalytic technology can create many valuable products for environmental use all over the world.  相似文献   

10.
H2S is a notorious gas widely generated in the petrochemical industry. How to handle H2S effectively and convert it into highly-valued products is vital. Photocatalysis is promising in this field, as it could directly utilize solar light and convert H2S into H2 and S. In this review, the properties of hydrogen sulfide (H2S) is overviewed first, and conventional techniques (Claus process, thermolysis, non-thermal plasma, electrochemistry and other methods) for H2S conversion are simply introduced. Basic knowledge of photocatalysis and general strategies for enhancing the activities of photocatalysts are presented as well. Then typical work for photocatalytic conversion of H2S in gas phase and liquid phase are introduced case by case, with the generated H2 as the main product in these systems. Furthermore, methods for extraction of elemental sulfur from H2S by photocatalysis-related methods were discussed, with specific attention on photoelectrochemical cells and photovoltaic-electrochemical cells. In the end, current status of the research on photocatalytic conversion of H2S is summarized, and challenges in this field is put forward. In addition, some other possible strategies for photocatalytic conversion of H2S into highly-valued chemicals instead of hydrogen and elemental sulfur will be discussed, which is aimed to inspire researchers interested in this field.  相似文献   

11.
Single‐site photocatalysts generally display excellent photocatalytic activity and considerably high stability compared with homogeneous catalytic systems. A rational structural design of single‐site photocatalysts with isolated, uniform, and spatially separated active sites in a given solid is of prime importance to achieve high photocatalytic activity. Intense attention has been focused on the design and fabrication of single‐site photocatalysts by using porous materials as a platform. Metal–organic frameworks (MOFs) have great potential in the design and fabrication of single‐site photocatalysts due to their remarkable porosity, ultrahigh surface area, extraordinary tailorability, and significant diversity. MOFs can provide an abundant number of binding sites to anchor active sites, which results in a significant enhancement in photocatalytic performance. In this focus review, the development of single‐site MOF photocatalysts that perform important and challenging chemical redox reactions, such as photocatalytic H2 production, photocatalytic CO2 conversion, and organic transformations, is summarized thoroughly. Successful strategies for the construction of single‐site MOF photocatalysts are summarized and major challenges in their practical applications are noted.  相似文献   

12.
基于微波水热法和微乳液法合成SnO2/TiO2纳米管复合光催化剂. 通过X射线衍射(XRD)、配有能量色散X射线光谱仪(EDX)的透射电镜(TEM)和电化学手段对光催化剂进行表征. 以甲苯为模型污染物,考察光催化剂在紫外光(UV)和真空远紫外光(VUV)下的性能及失活再生. 结果表明,SnO2/TiO2纳米管复合光催化剂形成三元异质结(锐钛矿相TiO2(A-TiO2)/金红石相TiO2(R-TiO2)、A-TiO2/SnO2和R-TiO2/SnO2异质结),促使光生电子-空穴对的有效分离,提高光催化活性. SnO2/TiO2表现出最佳的光催化性能,UV和VUV条件下的甲苯降解率均达100%,CO2生成速率(k2)均为P25的3倍左右. 但由于UV光照矿化能力不足,中间产物易在催化剂表面累积. 随着UV光照时间的增加,SnO2/TiO2逐渐失活,20 h 后k2由138.5 mg·m-3·h-1下降到76.1 mg·m-3·h-1. 利用VUV再生失活的SnO2/TiO2,过程中产生的·OH、O2、O(1D)、O(3P)、O3等活性物质可氧化吸附于催化剂活性位的难降解中间产物,使催化剂得以再生,12 h后k2恢复到143.6 mg·m-3·h-1. UV和VUV的协同效应使UV降解耦合VUV再生成为一种可持续的光催化降解污染物模式.  相似文献   

13.
《中国化学快报》2021,32(9):2617-2628
The composite catalytic materials based on the mineral kaolinite are considered to be a potential approach for solving global energy scarcity and environmental pollution, which have excellent catalytic performance, low cost and excellent chemical stability. However, pure kaolinite does not have visible light absorption ability and cannot be used as a potential photocatalytic material. Fortunately, the unique physical and chemical properties of kaolinite can be acted as a good semiconductor carrier. Herein, this paper firstly presents the mineralogical characteristics of kaolinite. Next, kaolinite-based photocatalysts (such as TiO2/kaolinite, g-C3N4/kaolinite, g-C3N4/TiO2/kaolinite, ZnO) are discussed in detail from the formation of heterostructures, synthesis-modification methods, photocatalytic mechanisms, and electron transfer pathways. Furthermore, the specific role of kaolinite in photocatalytic materials is summarized and discussed. In addition, the photocatalytic applications of kaolinite-based photocatalysts in the fields of water decomposition, pollutant degradation, bacterial disinfection are reviewed. However, the modification of kaolinite is hard, the manufacture of a large number of kaolinite-based photocatalysts is difficult, the cost of doping noble metals is expensive, and the utilization rate of visible light is low, which limits its application in industrial practice. Finally, this paper presents some perspectives on the future development of kaolinite-based photocatalysts.  相似文献   

14.
It is still challenging to design and develop the state-of-the-art photocatalysts toward CO2 photoreduction. Enormous researchers have focused on the halide perovskites in the photocatalytic field for CO2 photoreduction, due to their excellent optical and physical properties. The toxicity of lead-based halide perovskites prevents their large-scale applications in photocatalytic fields. In consequence, lead-free halide perovskites (LFHPs) without the toxicity become the promising alternatives in the photocatalytic application for CO2 photoreduction. In recent years, the rapid advances of LFHPs have offer new chances for the photocatalytic CO2 reduction of LFHPs. In this review, we summarize not only the structures and properties of A2BX6, A2B(I)B(III)X6, and A3B2X9-type LFHPs but also their recent progresses on the photocatalytic CO2 reduction. Furthermore, we also point out the opportunities and perspectives to research LFHPs photocatalysts for CO2 photoreduction in the future.  相似文献   

15.
The copolymerization of cyclohexene oxide (CHO) and carbon dioxide (CO2) was carried out under supercritical CO2 (scCO2) conditions to afford poly (cyclohexene carbonate) (PCHC) in high yield. The scCO2 provided not only the C1 feedstock but also proved to be a very efficient solvent and processing aid for this copolymerization system. Double metal cyanide (DMC) and salen‐Co(III) catalysts were employed, demonstrating excellent CO2/CHO copolymerization with high yield and high selectivity. Surprisingly, our use of scCO2 was found to significantly enhance the copolymerization efficiency and the quality of the final polymer product. Thermally stable and high molecular weight (MW) copolymers were successfully obtained. Optimization led to excellent catalyst yield (656 wt/wt, polymer/catalyst) and selectivity (over 96% toward polycarbonate) that were significantly beyond what could be achieved in conventional solvents. Moreover, detailed thermal analyses demonstrated that the PCHC copolymer produced in scCO2 exhibited higher glass transition temperatures (Tg ~ 114 °C) compared to polymer formed in dense phase CO2 (Tg ~ 77 °C), and hence good thermal stability. Additionally, residual catalyst could be removed from the final polymer using scCO2, pointing toward a green method that avoids the use of conventional volatile organic‐based solvents for both synthesis and work‐up. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2785–2793  相似文献   

16.
时静雅  武培怡 《化学进展》2009,21(5):1023-1033
超临界CO2(scCO2)作为一种物理化学性质优良、具有高扩散速率及优良溶解性能的溶剂,在科学研究及工业生产中广受青睐。将scCO2应用于聚合物体系中,CO2 与聚合物间特殊的相互作用有利于CO2分子在聚合物中的吸附与扩散。同时通过CO2的吸附及其对聚合物的溶胀和塑化作用,聚合物所处微观化学环境以及整体结构性质会发生一定的变化。由于傅立叶变换红外光谱(FTIR)技术能够有效地考察化学环境变化对分子结构造成的影响,这一表征技术在超临界CO2作用体系中广为应用。本文主要选取了近年来利用FTIR技术考察scCO2作用于聚合物体系的一些实例,从CO2-聚合物相互作用机理,scCO2对聚合物或生物大分子的加工过程的影响两方面,阐述了利用红外光谱技术在scCO2作用体系中的应用以及前景。  相似文献   

17.
Titanium dioxide (TiO2) is one of the best semiconductor photocatalysts with optical band gap of 3.2 eV. The optical band gap and photocatalytic properties could be further tuned by tailoring shape, size, composition, and morphology of the nanostructures. Hydrothermal synthesis methods have been applied to produce well-controlled nanostructured TiO2 materials with different morphologies and improved optoelectronic properties. Among various morphologies, one-dimensional (1D) TiO2 nanostructures are of great importance in the field of energy, environmental, and biomedical because of the directional transmission properties resulting from their 1D geometry. Particularly, TiO2 nanorods (NRs) have gained special attention because of their densely packed structure, quantum confinement effect, high aspect ratio, and large specific surface area that could specially improve the directional charge transmission efficiency. This results in the effective photogenerated charge separation and light absorption, which are really important for potential applications of TiO2-based materials for photocatalytic and other important applications. In this review, hydrothermal syntheses of TiO2 NRs including the formation chemistry and the growth mechanism of NRs under different chemical environments and effects of various synthesis parameters (pH, reaction temperature, reaction time, precursors, solvents etc.) on morphology and optoelectronic properties have been discussed. Recent developments in the hydrothermal synthesis of TiO2 NRs and tailoring of their surface properties through various modification strategies such as defect creation, doping, sensitization, surface coating, and heterojunction formation with various functional nanomaterials (plasmonic, oxide, quantum dots, graphene-based nanomaterials, etc.) have been reported to improve the photocatalytic activities. Furthermore, applications of TiO2 NRs/tailored TiO2 NRs as superior photocatalysts in degradation of organic pollutants and bacterial disinfection have been discussed with emphasis on mechanisms of action and recent advances in the fields.  相似文献   

18.
通过简单的沉淀、水热、溶剂热和溶胶凝胶法分别制备出实心球(s-TiO2)、空心球(h-TiO2)、纳米管(a-TNT)和介孔形状(m-TiO2)的锐钛矿晶型结构TiO2光催化材料。采用HRTEM、FESEM、XRD、UV-Vis、N2吸-脱附和光解水制氢反应等对催化材料的微观表面结构、光吸收性能以及不同形貌光催化剂的光解水制氢的性能对比研究。结果表明:s-TiO2具有最高的光催化活性,主要归功于s-TiO2独特的微观形貌结构所致,s-TiO2是由亚微晶颗粒组成的介孔状实心球,亚微晶粒径相比较其它形貌的材料要小,有利于光生载流子的迁移,抑制电子-空穴对的体相复合,导致活性提高。同时,晶化过程用于传质通道的无序微孔可以束缚用作牺牲剂的CH3OH分子,使得空穴快速被牺牲剂消耗,减少与电子复合。  相似文献   

19.
《先进技术聚合物》2018,29(10):2643-2654
Supercritical carbon dioxide (scCO2) processed thermoplastic starch (scCO2aTPS), cellulose nanofiber (CNF) modified scCO2aTPS (scCO2aTPS100CNF0.02) and glutaraldehyde (GA) modified scCO2aTPS100CNF0.02 (scCO2aTPS100CNF0.02GAx) foams were prepared for the first time using scCO2 as a blowing agent during their foaming processes. The expansion ratio, cell density, moisture resistance, and compressive strength (σc) retention properties of each foam series were considerably improved with increasing scCO2 pressure during the foaming processes. The expansion ratios and cell densities of each scCO2aTPS100CNF0.02GAx foam series were increased considerably to a maximum value, as the GA content approached an optimum value. The optimal scCO211TPS100CNF0.02GA1.6 foam material exhibited a high expansion ratio and cell density at approximately 50 and approximately 8 × 108 cells/cm3, respectively. Compared with corresponding aged scCO2aTPS and scCO2aTPS100CNF0.02 foam specimens, considerably better moisture resistance and σc retention properties were observed for scCO2aTPS100CNF0.02GAx foam specimens, when they were modified with the corresponding optimum GA content. The moisture resistance and σc retention for optimal prepared scCO27TPS100CNF0.02GA0.4, scCO29TPS100CNF0.02GA0.8 and scCO211TPS100CNF0.02GA1.6 foam materials improved further with increasing scCO2 pressure. Possible reasons accounting for the highly expansion ratio, moisture resistance, and σc retention properties for scCO2aTPS100CNF0.02GAx foams are presented.  相似文献   

20.
The isolated and tetrahedrally coordinated metal oxide (Ti, V, Cr, Mo and W-oxides) moieties can be included in the silica matrixes of silica-based microporous zeolite and mesoporous silica materials and named as “single-site photocatalysts”. Under UV-light irradiation these single-site photocatalysts form the charge transfer excited state, i.e., the excited electron–hole pair state which is located quite near to each other in different from the manner observed on semiconducting materials such as TiO2, and play a significant role in various photocatalytic reactions. These single-site photocatalysts not only can promote photocatalytic reactions but also can be utilized to synthesis of functional materials. The nano-sized metal catalyst and visible-light sensitive binary oxide photocatalyst can be synthesized on the excited single-site photocatalyst under UV-light irradiation. The transparent mesoporous silica thin film with single-site photocatalyst generates the super-hydrophilic surface. In this review, our recent applications of single-site photocatalysts to synthesis of the surface functional materials have been introduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号