首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Diimido, Imido Oxo, Dioxo, and Imido Alkylidene Halfsandwich Compounds via Selective Hydrolysis and α—H Abstraction in Molybdenum(VI) and Tungsten(VI) Organyl Complexes Organometal imides [(η5‐C5R5)M(NR′)2Ph] (M = Mo, W, R = H, Me, R′ = Mes, tBu) 4 — 8 can be prepared by reaction of halfsandwich complexes [(η5‐C5R5)M(NR′)2Cl] with phenyl lithium in good yields. Starting from phenyl complexes 4 — 8 as well as from previously described methyl compounds [(η5‐C5Me5)M(NtBu)2Me] (M = Mo, W), reactions with aqueous HCl lead to imido(oxo) methyl and phenyl complexes [(η5‐C5Me5)M(NtBu)(O)(R)] M = Mo, R = Me ( 9 ), Ph ( 10 ); M = W, R = Ph ( 11 ) and dioxo complexes [(η5‐C5Me5)M(O)2(CH3)] M = Mo ( 12 ), M = W ( 13 ). Hydrolysis of organometal imides with conservation of M‐C σ and π bonds is in fact an attractive synthetic alternative for the synthesis of organometal oxides with respect to known strategies based on the oxidative decarbonylation of low valent alkyl CO and NO complexes. In a similar manner, protolysis of [(η5‐C5H5)W(NtBu)2(CH3)] and [(η5‐C5Me5)Mo(NtBu)2(CH3)] by HCl gas leads to [(η5‐C5H5)W(NtBu)Cl2(CH3)] 14 und [(η5‐C5Me5)Mo(NtBu)Cl2(CH3)] 15 with conservation of the M‐C bonds. The inert character of the relatively non‐polar M‐C σ bonds with respect to protolysis offers a strategy for the synthesis of methyl chloro complexes not accessible by partial methylation of [(η5‐C5R5)M(NR′)Cl3] with MeLi. As pure substances only trimethyl compounds [(η5‐C5R5)M(NtBu)(CH3)3] 16 ‐ 18 , M = Mo, W, R = H, Me, are isolated. Imido(benzylidene) complexes [(η5‐C5Me5)M(NtBu)(CHPh)(CH2Ph)] M = Mo ( 19 ), W ( 20 ) are generated by alkylation of [(η5‐C5Me5)M(NtBu)Cl3] with PhCH2MgCl via α‐H abstraction. Based on nmr data a trend of decreasing donor capability of the ligands [NtBu]2— > [O]2— > [CHR]2— ? 2 [CH3] > 2 [Cl] emerges.  相似文献   

2.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XXII. The Formation of [η2‐{tBu–P=P–SiMe3}Pt(PR3)2] from (Me3Si)tBuP–P=P(Me)tBu2 and [η2‐{C2H4}Pt(PR3)2] (Me3Si)tBuP–P = P(Me)tBu2 reacts with [η2‐{C2H4}Pt(PR3)2] yielding [η2‐{tBu–P=P–SiMe3}Pt(PR3)2]. However, there is no indication for an isomer which would be the analogue to the well known [η2‐{tBu2P–P}Pt(PPh3)2]. The syntheses and NMR data of [η2‐{tBu–P=P–SiMe3}Pt(PPh3)2] and [η2‐{tBu–P=P–SiMe3}Pt(PMe3)2] as well as the results of the single crystal structure determination of [η2‐{tBu–P=P–SiMe3}Pt(PPh3)2] are reported.  相似文献   

3.
The 1‐azonia‐2‐boratanaphthalenes (NH)(BX)C8H6 can be synthesized from 2‐aminostyrene and the dihaloboranes XBHal2 ( 1 ‐ 4 : X = Cl, Br, iPr, tBu). Further derivatives (NH)(BX)C8H6 are obtained from 1 by replacing Cl by alkoxy or alkyl groups [ 5 ‐ 8 : X = OMe, OtBu, Me, (CH2)3NMe2]. The hydrolysis of 1 gives a mixture of the bis(azoniaboratanaphthyl) oxide [(NH)BC8H6]2O ( 9 ) and the hydroxy derivative (NH)[B(OH)]C8H6 ( 10 ). The diboryl oxide 9 crystallizes in the space group C2/c. The lithiation of 4 at the nitrogen atom gives [NLi(tmen)](BtBu)C8H6 ( 11 ), which upon reaction with the diborane(4) B2Cl2(NMe2)2 yields the 1, 2‐bis(azoniaboratanaphthyl)diborane B2[N(BtBu)C8H6]2(NMe2)2 ( 12 ). The 2‐chloro‐1‐methyl‐4‐phenyl derivative (NMe)(BCl)C8H5Ph ( 13 ) of the parent (NH)(BH)C8H6 can be synthesized from the aminoborane BCl2(NMePh) and phenylethyne. Substitution of Cl in 13 gives the derivatives (NMe)(BX)C8H5Ph [ 14 ‐ 20 : X = N(SiMe3)2, Me, Et, iBu, tBu, CH2SiMe3, Ph] and the reaction of 13 with Li2O affords the bis(azoniaboratanaphthyl) oxide [(NMe)BC8H5Ph]2O ( 21 ). The reaction of 16 or 19 with [(MeCN)3Cr(CO)3] yields the complexes [{(NMe)(BX)C8H5Ph}Cr(CO)3] ( 22 , 23 : X = Et, CH2SiMe3), in which the chromium atom is hexahapto bound to the homoarene part of 16 or 19 , respectively. The complex 23 crystallizes in the space group P21/c. Upon reaction of the phenols para‐C6H4R(OH) with the aryldichloroboranes ArBCl2 and subsequent condensation of the products with phenylethyne, the 1‐oxonia‐2‐boratanaphthalenes O(BAr)C8H4RPh with R in position 6 and Ph in position 4 are formed ( 24 ‐ 26 : Ar = Ph, R = H, Me, OMe; 27 ‐ 29 : Ar = C6F5, R = H, Me, OMe). The azoniaboratanaphthalenes 1 ‐ 23 were characterized by NMR methods.  相似文献   

4.
Phosphanediyl Transfer from Inversely Polarized Phosphaalkenes R1P=C(NMe2)2 (R1 = tBu, Cy, Ph, H) onto Phosphenium Complexes [(η5‐C5H5)(CO)2M=P(R2)R3] (R2 = R3 = Ph; R2 = tBu, R3 = H; R2 = Ph, R3 = N(SiMe3)2) Reaction of the freshly prepared phosphenium tungsten complex [(η5‐C5H5)(CO)2W=PPh2] ( 3 ) with the inversely polarized phosphaalkenes RP=C(NMe2)2 ( 1 ) ( a : R = tBu; b : Cy; c : Ph) led to the η2‐diphosphanyl complexes ( 9a‐c ) which were isolated by column chromatography as yellow crystals in 24‐30 % yield. Similarly, phosphenium complexes [(η5‐C5H5)(CO)2M=P(H)tBu] (M = W ( 6 ); Mo ( 8 )) were converted into (M = W ( 11 ); Mo ( 12 )) by the formal abstraction of the phosphanediyl [PtBu] from 1a . Treatment of [(η5‐C5H5)(CO)2W=P(Ph)N(SiMe3)2] ( 4 ) with HP=C(NMe2)2 ( 1d ) gave rise to the formation of yellow crystalline ( 10 ). The products were characterized by elemental analyses and spectra (IR, 1H, 13C‐, 31P‐NMR, MS). The molecular structure of compound 10 was elucidated by an X‐ray diffraction analysis.  相似文献   

5.
Two potassium–dialkyl–TMP–zincate bases [(pmdeta)K(μ‐Et)(μ‐tmp)Zn(Et)] ( 1 ) (PMDETA=N,N,N′,N′′,N′′‐pentamethyldiethylenetriamine, TMP=2,2,6,6‐tetramethylpiperidide), and [(pmdeta)K(μ‐nBu)(μ‐tmp)Zn(nBu)] ( 2 ), have been synthesized by a simple co‐complexation procedure. Treatment of 1 with a series of substituted 4‐R‐pyridines (R=Me2N, H, Et, iPr, tBu, and Ph) gave 2‐zincated products of the general formula [{2‐Zn(Et)2‐μ‐4‐R‐C5H3N}2 ? 2{K(pmdeta)}] ( 3 – 8 , respectively) in isolated crystalline yields of 53, 16, 7, 23, 67, and 51 %, respectively; the treatment of 2 with 4‐tBu‐pyridine gave [{2‐Zn(nBu)2‐μ‐4‐tBu‐C5H3N}2 ? 2{K(pmdeta)}] ( 9 ) in an isolated crystalline yield of 58 %. Single‐crystal X‐ray crystallographic and NMR spectroscopic characterization of 3 – 9 revealed a novel structural motif consisting of a dianionic dihydroanthracene‐like tricyclic ring system with a central diazadicarbadizinca (ZnCN)2 ring, face‐capped on either side by PMDETA‐wrapped K+ cations. All the new metalated pyridine complexes share this dimeric arrangement. As determined by NMR spectroscopic investigations of the reaction filtrates, those solutions producing 3 , 7 , 8 , and 9 appear to be essentially clean reactions, in contrast to those producing 4 , 5 , and 6 , which also contain laterally zincated coproducts. In all of these metalation reactions, the potassium–zincate base acts as an amido transfer agent with a subsequent ligand‐exchange mechanism (amido replacing alkyl) inhibited by the coordinative saturation, and thus, low Lewis acidity of the 4‐coordinate Zn centers in these dimeric molecules. Studies on analogous trialkyl–zincate reagents in the absence and presence of stoichiometric or substoichiometric amounts of TMP(H) established the importance of Zn? N bonds for efficient zincation.  相似文献   

6.
The six‐, eight‐ and twelve‐membered cyclo‐siloxanes, cyclo‐[R2SiOSi(Ot‐Bu)2O]2 (R = Me ( 1 ), Ph ( 2 )), cyclo‐(t‐BuO)2Si(OSiR2)2O (R = Me ( 3 ), Ph ( 4 )), cyclo‐R2Si[OSi(Ot‐Bu)2]2O (R = Me ( 5 ), Ph ( 6 )) and cyclo‐[(t‐BuO)2Si(OSiMe2)2O]2 ( 3a ) were synthesized in high yields by the reaction of (t‐BuO)2Si(OH)2 and [(t‐BuO)2SiOH]2O with R2SiCl2 and (R2SiCl)2O (R = Me, Ph). Compounds 1 — 6 were characterized by solution and solid‐state 29Si NMR spectroscopy, electrospray mass spectrometry and osmometric molecular weight determination. The molecular structure of 4 has been determined by single crystal X‐ray diffraction and features a six‐membered cyclo‐siloxane ring that is essentially planar. The reduction of 1 — 6 with i‐Bu2AlH (DIBAL‐H) led to the formation of the metastable aluminosiloxane (t‐BuO)2Si(OAli‐Bu2)2 ( 7 ) along with Me2SiH2 and Ph2SiH2.  相似文献   

7.
The reaction of [Cp*MCl4] (M = Nb, Ta; Cp* = C5Me5) with PH2R in toluene at room temperature gives the primary phosphine complexes [Cp*MCl4(PH2R)] [Cp* = C5Me5; M = Nb: R = But ( 1a ), Ad ( 2a ), Cy ( 3a ), Ph ( 4a ), 2, 4, 6‐Me3C6H2 (Mes) ( 5a ); M = Ta: R = But ( 1b ), Ad ( 2b ), Cy ( 3b ), Ph ( 4b ), Mes ( 5b )] in high yield. 1—5 were characterized spectroscopically (NMR, IR, MS) and by crystal structure determinations. The starting material [Cp*TaCl4] is monomeric in the solid state, as shown by crystal structure determination.  相似文献   

8.
Synthesis and Metalation of Tripodal Siloxazane Ligands tBuSi(OSiMe2NHR)3 [R = H, Me, tBu, Ph, SiMe3] tBuSi(OSiMe2Cl)3 ( 1 ) was generated by the condensation of tert-butylsilanetriol with dichlorodimethylsilane under elimination of HCl. A series of tripodal amines tBuSi(OSiMe2NHR)3 [R = H ( 2 ), R = Me ( 3 ), R = tBu ( 4 ), R = Ph ( 5 )] was synthesized by ammonolysis, aminolysis or salt elimination of 1 with primary lithium amides. 5  has been subjected to single crystal X-ray diffraction, which confirmed the triarmed amine. The siloxamine tBuSi(OSiMe2NHSiMe3)3 ( 6 ) was generated by the reaction of 2 with three moles of chlorotrimethylsilane. The lithium amides tBuSi(OSiMe2N[Li]tBu)3 ( 7 ), tBuSi(OSiMe2N[Li]Ph)3 ( 8 ) and tBuSi(OSiMe2N[Li]SiMe3)3 ( 11 ) and the sodium amide tBuSi(OSiMe2N[Na]tBu)3 ( 9 ) were obtained by the complete hydrogen–metal exchange of the amines 4 – 6 with n-butyl lithium and n-butyl sodium in hexane, respectively. The transmetalation of 7 with copper(I) chloride gave the copper amide tBuSi(OSiMe2N[Cu]tBu)3 ( 10 ). The single crystal X-ray diffraction of the metal amides 7 , 9 and 11 shows a trifold coordination by additional interactions between each of the two metal atoms with oxygens in the siloxane groups in contrast to the copper amide 10 , which lacks such contacts. The almost isostructural metal amides 7 , 9 – 11 are monomeric and possess, similary to 5 , a pseudo three fold symmetry in the solid state. 5 and 7 crystallize in the monoclinic space group P21/c whereas the compounds 9 – 11 crystallize in the centrosymmetric triclinic space group P 1.  相似文献   

9.
Treatment of the thioether‐substituted secondary phosphanes R2PH(C6H4‐2‐SR1) [R2=(Me3Si)2CH, R1=Me ( 1PH ), iPr ( 2PH ), Ph ( 3PH ); R2=tBu, R1=Me ( 4PH ); R2=Ph, R1=Me ( 5PH )] with nBuLi yields the corresponding lithium phosphanides, which were isolated as their THF ( 1 – 5Pa ) and tmeda ( 1 – 5Pb ) adducts. Solid‐state structures were obtained for the adducts [R2P(C6H4‐2‐SR1)]Li(L)n [R2=(Me3Si)2CH, R1=nPr, (L)n=tmeda ( 2Pb ); R2=(Me3Si)2CH, R1=Ph, (L)n=tmeda ( 3Pb ); R2=Ph, R1=Me, (L)n=(THF)1.33 ( 5Pa ); R2=Ph, R1=Me, (L)n=([12]crown‐4)2 ( 5Pc )]. Treatment of 1PH with either PhCH2Na or PhCH2K yields the heavier alkali metal complexes [{(Me3Si)2CH}P(C6H4‐2‐SMe)]M(THF)n [M=Na ( 1Pd ), K ( 1Pe )]. With the exception of 2Pa and 2Pb , photolysis of these complexes with white light proceeds rapidly to give the thiolate species [R2P(R1)(C6H4‐2‐S)]M(L)n [M=Li, L=THF ( 1Sa , 3Sa – 5Sa ); M=Li, L=tmeda ( 1Sb , 3Sb – 5Sb ); M=Na, L=THF ( 1Sd ); M=K, L=THF ( 1Se )] as the sole products. The compounds 3Sa and 4Sa may be desolvated to give the cyclic oligomers [[{(Me3Si)2CH}P(Ph)(C6H4‐2‐S)]Li]6 (( 3S )6) and [[tBuP(Me)(C6H4‐2‐S)]Li]8 (( 4S )8), respectively. A mechanistic study reveals that the phosphanide–thiolate rearrangement proceeds by intramolecular nucleophilic attack of the phosphanide center at the carbon atom of the substituent at sulfur. For 2Pa / 2Pb , competing intramolecular β‐deprotonation of the n‐propyl substituent results in the elimination of propene and the formation of the phosphanide–thiolate dianion [{(Me3Si)2CH}P(C6H4‐2‐S)]2?.  相似文献   

10.
The reaction of monomeric [(TptBu,Me)LuMe2] (TptBu,Me=tris(3‐Me‐5‐tBu‐pyrazolyl)borate) with primary aliphatic amines H2NR (R=tBu, Ad=adamantyl) led to lutetium methyl primary amide complexes [(TptBu,Me)LuMe(NHR)], the solid‐state structures of which were determined by XRD analyses. The mixed methyl/tetramethylaluminate compounds [(TptBu,Me)LnMe({μ2‐Me}AlMe3)] (Ln=Y, Ho) reacted selectively and in high yield with H2NR, according to methane elimination, to afford heterobimetallic complexes: [(TptBu,Me)Ln({μ2‐Me}AlMe2)(μ2‐NR)] (Ln=Y, Ho). X‐ray structure analyses revealed that the monomeric alkylaluminum‐supported imide complexes were isostructural, featuring bridging methyl and imido ligands. Deeper insight into the fluxional behavior in solution was gained by 1H and 13C NMR spectroscopic studies at variable temperatures and 1H–89Y HSQC NMR spectroscopy. Treatment of [(TptBu,Me)LnMe(AlMe4)] with H2NtBu gave dimethyl compounds [(TptBu,Me)LnMe2] as minor side products for the mid‐sized metals yttrium and holmium and in high yield for the smaller lutetium. Preparative‐scale amounts of complexes [(TptBu,Me)LnMe2] (Ln=Y, Ho, Lu) were made accessible through aluminate cleavage of [(TptBu,Me)LnMe(AlMe4)] with N,N,N′,N′‐tetramethylethylenediamine (tmeda). The solid‐state structures of [(TptBu,Me)HoMe(AlMe4)] and [(TptBu,Me)HoMe2] were analyzed by XRD.  相似文献   

11.
The stepwise reaction of Me2SiCl2 with K[C5H3 tBuMe‐3] or Li[C9H7] and then with K[C9H6CH2CH2‐ NMe2‐1] followed by double deprotonation with NaH or LiBu, yields the two dimethylsilicon bridged cyclopentadienyl‐indenyl and indenyl‐indenyl donor‐functionalized ligand systems K2[(C5H2 tBu‐3‐Me‐5)SiMe2(1‐C9H5CH2CH2NMe2‐3)] ( 1 ), and Li2[(1‐C9H6)SiMe2(1‐C9H5CH2CH2NMe2‐3)] ( 2 ), respectively. Treatment of 1 with YCl3(THF)3, SmCl3(THF)1.77, TmI3(DME)3, and LuCl3(THF)3 gives the mixed ansa‐metallocenes [(C5H2 tBu‐3‐Me‐5)SiMe2(1‐C9H5CH2CH2NMe2‐3)]LnX (X = Cl, Ln = Y ( 3 ), Sm ( 4 ), Lu ( 5 ); X = I, Ln = Tm ( 6 )), respectively. The reaction of 2 with LuCl3(THF)3 yields [(1‐C9H6)SiMe2(1‐C9H5CH2CH2NMe2‐3)]LuCl ( 7 ). Compound 4 reacts with LiMe to give the corresponding alkyl derivative [(C5H2 tBu‐3‐Me‐5)SiMe2(1‐C9H5CH2CH2NMe2‐3)]Sm(CH3) ( 8 ). The new complexes were characterized by elemental analyses, MS spectrometry, and NMR spectroscopy. The molecular structures of 5 and 6 were determined by single crystal X‐ray diffraction.  相似文献   

12.
Synthesis and Structure of C,N‐difunctionalized Sulfinimideamides Sulfurdiimides RN=S=NR ( 1 a , b ) react in diethyl ether with two equivalents of lithiummethyl to give dimeric C,N‐dilithiummethylenesulfinimideamide ether adducts {Li2[H2C–S(NR)2 · Et2O]}2 ( 2 a , b ) ( a : R = tBu, b : R = SiMe3). Metathesis of 2 b with four equivalents of Me3SiCl, Me3SnCl or Ph3SnCl yields the corresponding C,N‐bis‐substituted sulfinimideamides R3EH2C–S[N(SiMe3)2]NER3 ( 3 – 5 ) ( 3 : R = Me, E = Sn; 4 : R = Ph, E = Sn; 5 : R = Me, E = Si). The crystal structures of 2 a and 2 b were determined by X‐ray structure analysis. Both compounds form centrosymmetric cage structures consisting of two distorted face sharing cubes ( 2 a : space group P1 (No. 2); Z = 2 (4 · 0,5); 2 b : space group C2/c (No. 15), Z = 4).  相似文献   

13.
Hydrogallation of Me3Si–C≡C–NR'2 with R2Ga–H (R = tBu, CH2tBu, iBu) yielded Ga/N‐based active Lewis pairs, R2Ga–C(SiMe3)=C(H)–NR'2 ( 7 ). The Ga and N atoms adopt cis‐positions at the C=C bonds and show weak Ga–N interactions. tBu2GaH and Me3Si–C≡C–N(C2H4)2NMe afforded under exposure of daylight the trifunctional digallium(II) compound [MeN(C2H4)2N](H)C=C(SiMe3)Ga(tBu)–Ga(tBu)C(SiMe3)=C(H)[N(C2H4)2NMe] ( 8 ), which results from elimination of isobutene and H2 and Ga–Ga bond formation. 8 was selectively obtained from the ynamine and [tBu(H)Ga–Ga(H)tBu]2[HGatBu2]2. 7a (R = tBu; NR'2 = 2,6‐Me2NC5H8) and H8C4N–C≡N afforded the adduct tBu2Ga‐C(SiMe3)=C(H)(2,6‐Me2NC5H8) · N≡C–NC4H8 ( 11 ) with the nitrile bound to gallium. The analogous ALP with harder Al atoms yielded an adduct of the nitrile dimer or oligomers of the nitrile at room temperature. The reaction of 7a with Ph–N=C=O led to the insertion of two NCO groups into the Ga–Cvinyl bond to yield a GaOCNCN heterocycle with Ga bound to O and N atoms ( 12 ).  相似文献   

14.
The steric and electronic effects exerted by the substituents R/R′ on the heterolytic H2‐splitting by phosphine‐boranes R3B/PR′3 [R = C6F5 ( 1 ), Ph ( 2 ); R′ = C6H2Me3 ( a ), tBu ( b ), Ph ( c ), C6F5 ( d ), Me ( e ), H ( f )] have been studied by performing quantum mechanical density functional theory and RI‐MP2 calculations. Energy decomposition analyses based on the block‐localized wavefunction method show that the nature of the interaction between R3B and PR′3 is strongly dependent on the B? P distance. With short B? P distances (~2.1 Å), the strength of Lewis pairs results from the balance among various energy terms, and both strong and weak dative bonds can be found in this group. However, at long B? P distances (>4.0 Å), the correlation and dispersion energy (ΔEcorr) dominates. In other words, the van der Waals (vdW) interaction rules these weakly bound complexes. No ion‐pair structures of 1f and 2c – 2f can be located as they instantly converge to vdW complexes R3B···H2···PR′3. We thus propose a model, which predicts that when the sum (Ehp) of the hydride affinity (HA) of BR3 and the proton affinity (PA) of PR′3 is higher than 340.0 kcal/mol, the ion‐pair [R3BH?][HPR′] can be observed, whereas with Ehp below this value, the ion pair would instantly undergo the combination of proton and hydride with the release of H2. The overall reaction energies ( 1a – 1e and 2a – 2b ) can be best described by a fitting equation with HA(BR3), PA(PR′3), and the binding energy ΔEb(BR3/PR′3) as predictor variables: ΔER([R3BH?][HPR′]) = ?0.779HA(BR3) ? 0.695PA(PR′3) ? 1.331 ΔE (BR3/PR′3) + 245.3 kcal/mol. The fitting equation provides quantitative insights into the steric and electronic effects on the thermodynamic aspects of the heterolytic H2‐splitting reactions. The electronic effects are reflected by HA(BR3) and PA(PR′3), and ΔEb can be significantly influenced by the steric overcrowding. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

15.
Unexpected Reduction of [Cp*TaCl4(PH2R)] (R = But, Cy, Ad, Ph, 2,4,6‐Me3C6H2; Cp* = C5Me5) by Reaction with DBU – Molecular Structure of [(DBU)H][Cp*TaCl4] (DBU = 1,8‐diazabicyclo[5.4.0]undec‐7‐ene) [Cp*TaCl4(PH2R)] (R = But, Cy, Ad, Ph, 2,4,6‐Me3C6H2 (Mes); Cp* = C5Me5) react with DBU in an internal redox reaction with formation of [(DBU)H][Cp*TaCl4] ( 1 ) (DBU = 1,8‐diazabicyclo[5.4.0]undec‐7‐ene) and the corresponding diphosphane (P2H2R2) or decomposition products thereof. 1 was characterised spectroscopically and by crystal structure determination. In the solid state, hydrogen bonding between the (DBU)H cation and one chloro ligand of the anion is observed.  相似文献   

16.
Enantiomerically pure triflones R1CH(R2)SO2CF3 have been synthesized starting from the corresponding chiral alcohols via thiols and trifluoromethylsulfanes. Key steps of the syntheses of the sulfanes are the photochemical trifluoromethylation of the thiols with CF3Hal (Hal=halide) or substitution of alkoxyphosphinediamines with CF3SSCF3. The deprotonation of RCH(Me)SO2CF3 (R=CH2Ph, iHex) with nBuLi with the formation of salts [RC(Me)? SO2CF3]Li and their electrophilic capture both occurred with high enantioselectivities. Displacement of the SO2CF3 group of (S)‐MeOCH2C(Me)(CH2Ph)SO2CF3 (95 % ee) by an ethyl group through the reaction with AlEt3 gave alkane MeOCH2C(Me)(CH2Ph)Et of 96 % ee. Racemization of salts [R1C(R2)SO2CF3]Li follows first‐order kinetics and is mainly an enthalpic process with small negative activation entropy as revealed by polarimetry and dynamic NMR (DNMR) spectroscopy. This is in accordance with a Cα? S bond rotation as the rate‐determining step. Lithium α‐(S)‐trifluoromethyl‐ and α‐(S)‐nonafluorobutylsulfonyl carbanion salts have a much higher racemization barrier than the corresponding α‐(S)‐tert‐butylsulfonyl carbanion salts. Whereas [PhCH2C(Me)SO2tBu]Li/DMPU (DMPU = dimethylpropylurea) has a half‐life of racemization at ?105 °C of 2.4 h, that of [PhCH2C(Me)SO2CF3]Li at ?78 °C is 30 d. DNMR spectroscopy of amides (PhCH2)2NSO2CF3 and (PhCH2)N(Ph)SO2CF3 gave N? S rotational barriers that seem to be distinctly higher than those of nonfluorinated sulfonamides. NMR spectroscopy of [PhCH2C(Ph)SO2R]M (M=Li, K, NBu4; R=CF3, tBu) shows for both salts a confinement of the negative charge mainly to the Cα atom and a significant benzylic stabilization that is weaker in the trifluoromethylsulfonyl carbanion. According to crystal structure analyses, the carbanions of salts {[PhCH2C(Ph)SO2CF3]Li? L }2 ( L =2 THF, tetramethylethylenediamine (TMEDA)) and [PhCH2C(Ph)SO2CF3]NBu4 have the typical chiral Cα? S conformation of α‐sulfonyl carbanions, planar Cα atoms, and short Cα? S bonds. Ab initio calculations of [MeC(Ph)SO2tBu]? and [MeC(Ph)SO2CF3]? showed for the fluorinated carbanion stronger nC→σ* and nO→σ* interactions and a weaker benzylic stabilization. According to natural bond orbital (NBO) calculations of [R1C(R2)SO2R]? (R=tBu, CF3) the nC→σ*S? R interaction is much stronger for R=CF3. Ab initio calculations gave for [MeC(Ph)SO2tBu]Li ? 2 Me2O an O,Li,Cα contact ion pair (CIP) and for [MeC(Ph)SO2CF3]Li ? 2 Me2O an O,Li,O CIP. According to cryoscopy, [PhCH2C(Ph)SO2CF3]Li, [iHexC(Me)SO2CF3]Li, and [PhCH2C(Ph)SO2CF3]NBu4 predominantly form monomers in tetrahydrofuran (THF) at ?108 °C. The NMR spectroscopic data of salts [R1(R2)SO2R3]Li (R3=tBu, CF3) indicate that the dominating monomeric CIPs are devoid of Cα? Li bonds.  相似文献   

17.
Deprotonation of aminophosphaalkenes (RMe2Si)2C?PN(H)(R′) (R=Me, iPr; R′=tBu, 1‐adamantyl (1‐Ada), 2,4,6‐tBu3C6H2 (Mes*)) followed by reactions of the corresponding Li salts Li[(RMe2Si)2C?P(M)(R′)] with one equivalent of the corresponding P‐chlorophosphaalkenes (RMe2Si)2C?PCl provides bisphosphaalkenes (2,4‐diphospha‐3‐azapentadienes) [(RMe2Si)2C?P]2NR′. The thermally unstable tert‐butyliminobisphosphaalkene [(Me3Si)2C?P]2NtBu ( 4 a ) undergoes isomerisation reactions by Me3Si‐group migration that lead to mixtures of four‐membered heterocyles, but in the presence of an excess amount of (Me3Si)2C?PCl, 4 a furnishes an azatriphosphabicyclohexene C3(SiMe3)5P3NtBu ( 5 ) that gave red single crystals. Compound 5 contains a diphosphirane ring condensed with an azatriphospholene system that exhibits an endocylic P?C double bond and an exocyclic ylidic P(+)? C(?)(SiMe3)2 unit. Using the bulkier iPrMe2Si substituents at three‐coordinated carbon leads to slightly enhanced thermal stability of 2,4‐diphospha‐3‐azapentadienes [(iPrMe2Si)2C?P]2NR′ (R′=tBu: 4 b ; R′=1‐Ada: 8 ). According to a low‐temperature crystal‐structure determination, 8 adopts a non‐planar structure with two distinctly differently oriented P?C sites, but 31P NMR spectra in solution exhibit singlet signals. 31P NMR spectra also reveal that bulky Mes* groups (Mes*=2,4,6‐tBu3C6H2) at the central imino function lead to mixtures of symmetric and unsymmetric rotamers, thus implying hindered rotation around the P? N bonds in persistent compounds [(RMe2Si)2C?P]2NMes* ( 11 a , 11 b ). DFT calculations for the parent molecule [(H3Si)2C?P]2NCH3 suggest that the non‐planar distortion of compound 8 will have steric grounds.  相似文献   

18.
Synthesis, Structure, and Reactivity of the Ferrioarsaalkene [(η5‐C5Me5)(CO)2FeAs=C(Ph)NMe2] Reaction of equimolar amounts of the carbenium iodide [Me2N(Ph)CSMe]I and LiAs(SiMe3)2 · 1.5 THF afforded the thermolabile arsaalkene Me3SiAs = C(Ph)NMe2 ( 1 ), which in situ was converted into the black crystalline ferrioarsaalkene [(η5‐C5Me5)(CO)2FeAs=C(Ph)NMe2)] ( 2 ) by treatment with [(η5‐C5Me5)(CO)2FeCl]. Compound 2 was protonated by ethereal HBF4 to yield [(η5‐C5Me5)(CO)2FeAs(H)C(Ph)NMe2]BF4 ( 3 ) and methylated by CF3SO3Me to give [(η5‐C5Me5)(CO)2FeAs(Me)C(Ph)NMe2]‐ SO3CF3 ( 4 ). [(η5‐C5Me5)(CO)2FeAs[M(CO)n]C(Ph)NMe2] ( 5 : [M(CO)n] = [Fe(CO)4]; 6 : [Cr(CO)5]) were isolated from the reaction of 2 with [Fe2(CO)9] or [{(Z)‐cyclooctene}Cr(CO)5], respectively. Compounds 2 – 6 were characterized by means of elemental analyses and spectroscopy (IR, 1H, 13C{1H}‐NMR). The molecular structure of 2 was determined by X‐ray diffraction analysis.  相似文献   

19.
A series of Me4Cp–amido complexes {[η51‐(Me4C5)SiMe2NR]TiCl2; R = t‐Bu, 1 ; C6H5, 2 ; C6F5, 3 ; SO2Ph, 4 ; or SO2Me, 5 } were prepared and investigated for olefin polymerization in the presence of methylaluminoxane (MAO). X‐ray crystallography of complexes 3 and 4 revealed very long Ti N bonds relative to the bonds of 1 . These complexes were employed for ethylene–styrene copolymerizations, styrene homopolymerizations, and propylene homopolymerizations in the presence of MAO. The productivities of the catalysts derived from 3 – 5 were much lower than the productivity of the catalyst derived from 1 for the propylene polymerizations and ethylene–styrene copolymerizations, whereas the styrene polymerization activities were much higher for the catalysts derived from 3 – 5 than for the catalyst derived from 1 . The polymerization behavior of the catalysts derived from the metallocenes 3 – 5 were more reminiscent of monocyclopentadienyl titanocene Cp′TiX3/MAO catalysts than of CpATiX2/MAO catalysts such as 1 containing alkylamido ligands. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4649–4660, 2000  相似文献   

20.
Five crystalline 2-(dimethylsila)pyrimidine derivatives (Z) have been prepared in excellent 14 or satisfactory 5 yield and characterised. The source of each was ultimately Li[CH(SiMe2R)(SiMe2OMe)] [R = Me (B) or OMe (I)]. Compound 1 (Z with Ar = Ph, X = SiMe3, n = 1) was obtained from Z [with Ar = Ph, X = Li(OEt2), n = 4; previously isolated from B [P.B. Hitchcock, M.F. Lappert, X.-H. Wei, J. Organomet. Chem. 689 (2004) 1342]] and Me3SiCl. The potassium salt 2 [Z with Ar = C6H4But-4; X = K(thf)3, n = 2] was made from K[CH(SiMe3)(SiMe2OMe)] (C) (via B) and 4-ButC6H4CN. Treatment of 2 with 1,2-dibromoethane afforded 3 (Z with Ar = 4-ButC6H4; X = H, n = 1); which when reacted with successively n-butyllithium and Me3SiCl produced 4 (Z with Ar = 4-ButC6H4, X = SiMe3, n = 1). Compound 5 [Z with Ar = 4-ButC6H4, X = Li(hmpa)2, n = 1] resulted from I with 4-ButC6H4CN and then OP(NMe2)3 (≡ hmpa). Plausible reaction pathways from the appropriate alkali metal alkyl C or I to 2 or 5, respectively, are suggested; these involve regiospecific 1,3-migrations of SiMe2OMe from C → N and electrocyclic loss of Me3SiOMe or SiMe2(OMe)2, respectively. The X-ray structures of crystalline 1, 2 and 5 are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号