首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A tournament matrix is a square zero-one matrix A satisfying the equation A+At = J ? I, where J is the all-ones matrix. In [1] it was proved that if A is an n × n tournament matrix, then the rank of A is at least (n - 1)/2, over any field; and in characteristic zero rank (A) equals n - 1 or n. Michael [3] has constructed examples having rank (n - 1)/2; they are double borderings of Hadamard tournaments of order n - 2, and so must satisfy n ≡ 1 (mod 4). In this note, we supplement this result by showing that an analogous construction is sometimes impossible when n ≡ 3 (mod 4).  相似文献   

2.
We present an efficient algorithm for generating an n × n nonsingular matrix uniformly over a finite field. This algorithm is useful for several cryptographic and checking applications. Over GF[2] our algorithm runs in expected time M(n) + O(n2), where M(n) is the time needed to multiply two n × n matrices, and the expected number of random bits it uses is n2 + 3. (Over other finite fields we use n2 + O(1) random field elements on average.) This is more efficient than the standard method for solving this problem, both in terms of expected running time and the expected number of random bits used. The standard method is to generate random n × n matrices until we produce one with nonzero determinant. In contrast, our technique directly produces a random matrix guaranteed to have nonzero determinant. We also introduce efficient algorithms for related problems such as uniformly generating singular matrices or matrices with fixed determinant. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
Let A be a singular matrix of M n (𝕂), where 𝕂 is an arbitrary field. Using canonical forms, we give a new proof that the sub-semigroup of ( n (𝕂), ×) generated by the similarity class of A is the set of matrices of M n (𝕂) with a rank lesser than or equal to that of A.  相似文献   

4.
For some years it has been known that every singular square matrix over an arbitrary field F is a product of idempotent matrices over F. This paper quantifies that result to some extent. Main result: for every field F and every pair (n,k) of positive integers, an n×n matrix S over F is a product of k idempotent matrices over F iff rank(I ? S)?k· nullity S. The proof of the “if” part involves only elementary matrix operations and may thus be regarded as constructive. Corollary: (for every field F and every positive integer n) each singular n×n matrix over F is a product of n idempotent matrices over F, and there is a singular n×n matrix over F which is not a product of n ? 1 idempotent matrices.  相似文献   

5.
The scrambling index of an n × n primitive Boolean matrix A is the smallest positive integer k such that A k (A T) k = J, where A T denotes the transpose of A and J denotes the n×n all ones matrix. For an m×n Boolean matrix M, its Boolean rank b(M) is the smallest positive integer b such that M = AB for some m × b Boolean matrix A and b×n Boolean matrix B. In 2009, M. Akelbek, S. Fital, and J. Shen gave an upper bound on the scrambling index of an n×n primitive matrix M in terms of its Boolean rank b(M), and they also characterized all primitive matrices that achieve the upper bound. In this paper, we characterize primitive Boolean matrices that achieve the second largest scrambling index in terms of their Boolean rank.  相似文献   

6.
In this note we consider the question under which conditions all entries of the matrix I???(I?+?X)?1 are nonnegative in case matrix X is a real positive definite matrix. Sufficient conditions are presented as well as some necessary conditions. One sufficient condition is that matrix X ?1 is an inverse M-matrix. A class of matrices for which the inequality holds is presented.  相似文献   

7.
We consider the Sylvester equation AX?XB+C=0 where the matrix C∈?n×m is of low rank and the spectra of A∈?n×n and B∈?m×m are separated by a line. We prove that the singular values of the solution X decay exponentially, that means for any ε∈(0,1) there exists a matrix X? of rank k=O(log(1/ε)) such that ∥X?X?2?εX2. As a generalization we prove that if A,B,C are hierarchical matrices then the solution X can be approximated by the hierarchical matrix format described in Hackbusch (Computing 2000; 62 : 89–108). The blockwise rank of the approximation is again proportional to log(1/ε). Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
In this note two new proofs are given of the following characterization theorem of M. Fiedler: Let Cn, n?2, be the class of all symmetric, real matrices A of order n with the property that rank (A + D) ? n - 1 for any diagonal real matrix D. Then for any A ε Cn there exists a permutation matrix P such that PAPT is tridiagonal and irreducible.  相似文献   

9.
Real linear approximation theory is developed further by regarding ? n as a module over the ring of circlets. By introducing a concept of orthogonality together with the respective Gram–Schmidt orthogonalization process, improved approximations upon the standard complex Hilbert space techniques follow. Related hierarchical bases are devised leading to a new family of rapidly constructible family of unitary matrices. With circlets, so-called oplets are introduced for approximation to improve the singular value decomposition of real matrices. Complex matrix approximation is also considered through finding the nearest real matrix in small rank perturbations.  相似文献   

10.
Given an m×n matrix M over E=GF(qt) and an ordered basis A={z1,…,zt} for field E over K=GF(q), expand each entry of M into a t×1 vector of coordinates of this entry relative to A to obtain an mt×n matrix M1 with entries from the field K. Let r=rank(M) and r1=rank(M1). We show that r?r1?min{rt,n}, and we determine the number b(m,n,r,r1,q,t) of m×n matrices M of rank r over GF(qt) with associated mt×n matrix M1 of rank r1 over GF (q).  相似文献   

11.
A weighing matrix of order n and weight m2 is a square matrix M of order n with entries from {-1,0,+1} such that MMT=m2I where I is the identity matrix of order n. If M is a group matrix constructed using a group of order n, M is called a group weighing matrix. Recently, group weighing matrices were studied intensively, especially when the groups are cyclic and abelian. In this paper, we study the abelian group weighing matrices that are symmetric, i.e.MT=M. Some new examples are found. Also we obtain a few exponent bounds on abelian groups that admit symmetric group weighing matrices. In particular, we prove that there is no symmetric abelian group weighing matrices of order 2pr and weight p2 where p is a prime and p≥ 5.Communicated by: K.T. Arasu  相似文献   

12.
Let f be a function on the set M n xn of all n by n real matrices. If f is rotationally invariant with respect to the proper orthogonal group, it has a representation \tilde f through the signed singular values of the matrix argument ?∈ M^nxn. Necessary and sufficient conditions are given for the rank 1 convexity of f in terms of \tilde f . Accepted 20 December 2000. Online Publication 18 May, 2001.  相似文献   

13.
Yonglin Cao 《代数通讯》2013,41(9):3404-3416
Let R be an Artinian chain ring with a principal maximal ideal. We investigate properties of matrices over R and give matrix representations of R-submodules of R n first, then consider Green's relations, Green's relation equivalent classes, Schützenberger groups of 𝒟-classes, principal factors, and group ?-classes of the multiplicative monoid M n (R) of n × n matrices over R. Furthermore, we show that M n (R) is an eventually regular semigroup and derive basic numerical information of M n (R) when R is finite.  相似文献   

14.
We are interested in the calculation of explicit formulae for the condition numbers of the two factors of the polar decomposition of a full rank real or complex m × n matrix A, where mn. We use a unified presentation that enables us to compute such condition numbers in the Frobenius norm, in cases where A is a square or a rectangular matrix subjected to real or complex perturbations. We denote by σ1 (respectively σ n) the largest (respectively smallest) singular value of A, and by K(A) = σ1 n the generalized condition number of A. Our main results are that the absolute condition number of the Hermitian polar factor is √2(1 + K(A)2)1/2/(1 + K(A)) and that the absolute condition number of the unitary factor of a rectangular matrix is 1/σ n. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
An n by n matrix M over a (commutative) field F is said to be central if M ? I has rank 1. We say that M is an involution if M2=I; if M is also central we call M a simple involution. We will prove that any n-by-n matrix M satisfying detM=±1 is the product of n+2 or fewer simple involutions. This can be reduced to n+1 if F contains no roots of the equation xn=(?1)n other than ±1. Any ordered field is of this kind. Our main result is that if M is any n-by-n nonsingular nonscalar matrix and if xiF such that x1?xn=detM, then there exist central matrices Mi such that M=M1?Mn and xi=detMi for i=1,…,n. We will apply this result to the projective group PGL(n,F) and to the little projective group PSL(n,F).  相似文献   

16.
If φ is a nonsingular linear operator on n × n symmetric matrices over a formally real field, n ? 3, and if φ preserves commutativity, then φ(A) = cU-1AU + f(A)I, where UtU and c are scalar and ? is a linear functional. This is an extension of a result of Chan and Lim.  相似文献   

17.
The scrambling index of an n×n primitive matrix A is the smallest positive integer k such that Ak(At)k=J, where At denotes the transpose of A and J denotes the n×n all ones matrix. For an m×n Boolean matrix M, its Boolean rank b(M) is the smallest positive integer b such that M=AB for some m×b Boolean matrix A and b×n Boolean matrix B. In this paper, we give an upper bound on the scrambling index of an n×n primitive matrix M in terms of its Boolean rank b(M). Furthermore we characterize all primitive matrices that achieve the upper bound.  相似文献   

18.
This paper concerns three notions of rank of matrices over semirings; real rank, semiring rank and column rank. These three rank functions are the same over subfields of reals but differ for matrices over subsemirings of nonnegative reals. We investigate the largest values of r for which the real rank and semiring rank, real rank and column rank of all m×n matrices over a given semiring are both r, respectively. We also characterize the linear operators which preserve the column rank of matrices over certain subsemirings of the nonnegative reals.  相似文献   

19.
Jang-Ho Chun 《代数通讯》2013,41(10):3095-3102
For positive integers ? and n, several authors studied ??-gradings of the full matrix ring M n (k) over a field k. In this article, we show that every (G × H)-grading of M n (k) can be constructed by a pair of compatible G-grading and H-grading of M n (k), where G and H are any finite groups. When G and H are finite cyclic groups, we characterize all (G × H)-gradings which are isomorphic to a good grading. Moreover, the results can be generalized for any finite abelian group grading of M n (k).  相似文献   

20.
Relative perturbation bounds for the unitary polar factor   总被引:5,自引:0,他引:5  
LetB be anm×n (mn) complex (or real) matrix. It is known that there is a uniquepolar decomposition B=QH, whereQ*Q=I, then×n identity matrix, andH is positive definite, providedB has full column rank. Existing perturbation bounds suggest that in the worst case, for complex matrices the change inQ be proportional to the reciprocal ofB's least singular value, or the reciprocal of the sum ofB's least and second least singular values if matrices are real. However, there are situations where this unitary polar factor is much more accurately determined by the data than the existing perturbation bounds would indicate. In this paper the following question is addressed: how much mayQ change ifB is perturbed to $\tilde B = D_1^* BD_2 $ , whereD 1 andD 2 are nonsingular and close to the identity matrices of suitable dimensions? It is shown that for a such kind of perturbation, the change inQ is bounded only by the distances fromD 1 andD 2 to identity matrices and thus is independent ofB's singular values. Such perturbation is restrictive, but not unrealistic. We show how a frequently used scaling technique yields such a perturbation and thus scaling may result in better-conditioned polar decompositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号