首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electron paramagnetic resonance (EPR) and optical absorption studies of vanadyl ions in lithium hydrogen oxalate monohydrate single crystal and powder are reported at room temperature. Single crystal rotations in each of the three mutually orthogonal crystalline planes, ab1, b1c1 and ac1 indicate four different vanadyl complexes. The detailed investigation of EPR spectra indicates that one of the VO2 + sites (the intense one) may enter the lattice substitutionally and the other three occupy the interstitial positions. From the angular variation, the spin Hamiltonian parameters are evaluated and discussed. The optical absorption spectrum shows four bands. From the optical and EPR data, various bonding parameters are determined and the nature of bonding in the crystal is discussed.  相似文献   

2.
EPR and optical absorption studies of VO2+-doped zinc lactate trihydrate single crystals are done at room temperature. The EPR spectra of VO2+ are characteristic of tetragonally compressed octahedral site. The angular variation of the EPR spectra shows single site occupying interstitial position in the lattice. The spin Hamiltonian parameters are evaluated as gx=1.9771, gy=2.0229, gz=1.9236 and Ax=76, Ay=104, Az=197 (×10−4) cm−1. Using these parameters and optical absorption data various bonding parameters are determined and the nature of bonding in the complex is discussed.  相似文献   

3.
EPR measurements of Cr3+ doped diammonium hexaaqua magnesium sulphate single crystals are made at room temperature. The crystal field and spin Hamiltonian parameters are evaluated from the resonance lines obtained at different angular orientations. The value of g=1.9763±0.0002 and are evaluated. On the basis of EPR data the site symmetry of Cr3+ in the crystal is discussed. Optical absorption studies of single crystals are also carried out at room temperature. The orbital energies of the chromium ion are estimated from the optical absorption spectrum. The different bonding parameters are obtained by correlating optical and EPR data and the nature of bonding in the crystal is discussed. The values of Racah parameters (B and C), crystal field parameter (Dq) and nephelauxetic parameters (h and k) are obtained as B=676,C=3371, , h=1.258 and k=0.21.  相似文献   

4.
The electron paramagnetic resonance (EPR) study of the Cr3+-doped ammonium oxalate monohydrate (AOM) single crystal is done at room temperature. Two magnetically inequivalent sites for chromium are observed. The hyperfine structure for Cr53 isotope is also obtained. The spin Hamiltonian parameters are evaluated as: D=(309±2)×10−4 cm−1, E=(103±2)×10−4 cm−1, g=1.9820±0.0002, A=(161±2)×10−4 cm−1 for site I and D=(309±2)×10−4 cm−1, E=(103±2)×10−4 cm−1, g=1.9791±0.0002, A=(160±2)×10−4 cm−1 for site II, respectively. On the basis of EPR data the site symmetry of Cr3+ doped single crystal is discussed. The optical absorption spectra are recorded in 195-925 nm wavelength range at room temperature. The energy values of different orbital levels are determined. On the basis of EPR and optical data, the nature of bonding in the crystal is discussed. The values of different parameters are B=803, C=3531, Dq=2208 cm−1, h=0.59 and k=0.21, where B and C are Racah parameters, Dq is crystal field parameter and h and k are nephelauxetic parameters, respectively.  相似文献   

5.
EPR study of Cr3+-doped tetramethyl cadmium chloride (TMCC) single crystals is carried out at room temperature. The crystal field and spin-Hamiltonian parameters are evaluated from the resonance line positions of different lines observed in the EPR spectra. The g and D parameter values are found to be g=1.9741±0.0002 and D=553±2×10−4 cm−1, respectively. EPR data indicate that the site symmetry of Cr3+ ion in the crystal is distorted octahedron. Cr3+ ions enter the lattice substitutionally replacing Cd2+ sites and bind to the neighboring extra Cd vacancies necessary for charge compensation. The optical absorption spectra are measured in 195–925 nm wavelength range at room temperature. From optical study the energy values of different orbital levels are estimated. Further, the bonding parameters are obtained by correlating optical and EPR data and the nature of bonding in the crystal is discussed. The values of Racah parameters (B and C), crystal field parameter (Dq) and nephelauxetic parameters (h and k) are obtained to be B=722, C=2845, Dq=2043 cm−1, h=1.015 and k=0.21.  相似文献   

6.
Single crystal electron paramagnetic resonance (EPR) studies on Cu(II)-doped magnesium potassium phosphate hexahydrate have been carried out at room temperature. The temperature dependence of g and A values has been obtained for the polycrystalline sample and the ground state is unambiguously identified. These results indicate the existence of a dynamic Jahn-Teller distortion for Cu(II) ion. The g and A tensor direction cosines are evaluated and compared with Mg-O directions, which confirms that Cu(II) enters substitutionally in the lattice.  相似文献   

7.
8.
Single crystal EPR study has been carried at room temperature for VO(II) doped zinc sodium phosphate hexahydrate. Single crystal rotations in each of the three mutually orthogonal crystallographic planes namely bc, ac, and ab indicate three chemically inequivalent sites, with intensity ratios of 25:13:1. The spin Hamiltonian parameters obtained for the two intense sites are: Site I: gxx=1.983, gyy=1.985, gzz=1.933; Axx=7.39 mT, Ayy=7.15 mT, Azz=19.03 mT; Site. II: gxx=1.985, gyy=1.985, gzz=1.937; Axx=7.36 mT, Ayy=7.25 mT, Azz=18.67 mT. The two VO bond directions in the two sites are approximately at right angles to each other. The powder spectrum clearly indicates two chemically inequivalent sites, confirming the single crystal analysis. Admixture coefficients, Fermi contact, and dipolar interaction terms have also been evaluated.  相似文献   

9.
The study is extended by growing the Cu2+ and VO2+ doped diammmonium d-tartarate single crystal in buffered solution with different pH values and the results are discussed referring to the color center forming property by means of transition metal impurities which are stable point defects. XRD study shows that the crystals grown in ammonium dihydrogen phosphate buffer with pH value of 5.9 which is smaller than that of water, the monoclinic symmetry of the crystal changes to orthorhombic and the number of paramagnetic centers is doubled. The spin-Hamiltonian parameters are determined and the ground state wave functions of Cu2+ ions are constructed. The optical absorption spectrum of both Cu2+ and VO2+ doped single crystals show three absorption bands corresponding to the splitting of d orbitals of metal ions in octahedral environment with tetragonal distorsion. Two of the bands lie in visible range and third one lies in infrared region.  相似文献   

10.
Single crystal EPR study of Mn(II) doped in cobalt potassium phosphate hexahydrate has been carried out at room temperature. The impurity shows a 30 line pattern EPR spectra along a particular crystallographic axis suggesting the existence of only one type of impurity in place of Co(II) ion in the host lattice. The spin Hamiltonian parameters have been estimated as: g11=2.011, g22=1.998, g33=1.991, and A11=−8.9, A22=−8.8, A33=−8.4 mT and D11=−15.2, D22=−9.4, D33=24.6 mT, respectively. The sign of A is designated as negative and D as positive. The covalency of metal-oxygen bond has been estimated. The relaxation times, calculated as a function of temperature, indicate spin-lattice relaxation narrowing at room temperature.  相似文献   

11.
Electron paramagnetic resonance (EPR) studies of V O2+ ions in L-asparagine monohydrate single crystals are reported at room temperature. It is found that the V O2+ ion takes up an interstitial site. The angular variations of the EPR spectra in three mutually perpendicular planes are used to determine the principal g and A values and their direction cosines. The values of g and A parameters are: gx=1.9011, gy=2.1008, gz=1.9891 and Ax=100, Ay=78, Az=126 (×10−4) cm−1. The optical absorption spectrum of V O2+ ions in L-asparagine monohydrate is also studied at room temperature. The band positions are calculated using the energy expressions and compared with the observed band positions to confirm the transitions. The best-fit values of the crystal field (Dq) and tetragonal (Ds and Dt) parameters are evaluated from the observed band positions.  相似文献   

12.
We investigated the crystal growth, electron paramagnetic resonance (EPR) and optical absorption spectra of l-threonine doped with Cu2+. The quality, size and habit of the single crystals grown from aqueous solution by the slow solvent evaporation and by the cooling methods vary when the impurities are introduced during the growth process. The variations with the magnetic field orientation of the EPR spectra of single-crystal samples at room temperature and 9.77 GHz in three crystal planes (ab, bc and ac) show the presence of copper impurities in four symmetry-related sites of the unit cell. These spectra display well resolved hyperfine couplings of the of Cu2+ with the ICu= of the copper nuclei. Additional hyperfine splittings, well-resolved only for specific orientations of the magnetic field, indicate that the copper impurity ions in the interstitial sites have two N ligands with similar hyperfine couplings. The principal values of the g and ACu tensors calculated from the EPR data are g1=2.051(1), g2=2.062(2), g3=2.260(2), ACu,1=16.9(5)×10−4 cm−1, ACu,2=21.8(6)×10−4 cm−1, ACu,3=180.0(5)×10−4 cm−1. The principal directions corresponding to g3 and to ACu,3 are coincident within the experimental errors, reflecting the orientation of the bonding planes of the copper ions in the crystal. The values of the crystal field energies are evaluated from the optical absorption spectrum, and the crystal field and bonding parameters of the Cu impurities in the crystal are calculated and analyzed. The EPR and optical absorption results are discussed in terms of the crystal structure of l-threonine and the electronic structure of the Cu2+ ions, and compared with data reported for other systems. The effects of the impurities in the growth and habit of the crystals are also discussed.  相似文献   

13.
14.
A single-crystal TlGaSe2 doped by paramagnetic Fe ions has been studied at room temperature by electron paramagnetic resonance (EPR) technique. The fine structure of EPR spectra of paramagnetic Fe3+ ions was observed. The spectra were interpreted to correspond to the transitions among spin multiplet (S=5/2, L=0) of Fe3+ ion, which are splitted by the local ligand crystal field (CF) of orthorhombic symmetry. Four equivalent Fe3+ centers have been observed in the EPR spectra and the local symmetry of crystal field at the Fe3+ site and CF parameters were determined. Experimental results indicate that the Fe ions substitute Ga at the center of GaSe4 tetrahedrons, and the rhombic distortion of the CF is caused by the Tl ions located in the trigonal cavities between the tetrahedral complexes.  相似文献   

15.
Studies on fine and hyperfine structures of paramagnetic resonance spectra in single crystals of Mn2+: ammonium oxalate monohydrate are reported. As sufficient numbers of lines were not obtained at room temperature, measurements have been done at liquid nitrogen temperature and at the frequency of X-band. The Mn2+ spin Hamiltonian parameters have been evaluated employing a large number of resonant line positions observed for various orientations of the external magnetic field and the surrounding crystalline field has been discussed. The values of the zero field parameters that give good fit to the observed EPR spectra have been evaluated. The values obtained for g, A, B, D, E and a are 2.0002±0.0002, (100±2)×10−4, (79.5±2)×10−4, (257±2)×10−4, (85±2)×10−4 and (−18±1)×10−4 cm−1, respectively. The percentage of covalency of the metal-ligand bond is also determined. The optical absorption study has been done at room temperature. The observed bands are assigned as transitions from the 6A1g(S) ground state to various excited quartet levels of Mn2+ ion in a cubic crystalline field. The electron repulsion parameters (B and C), the crystal field splitting parameter(Dq) and the Trees correction (α) providing good fit to the observed optical spectra have been estimated and the values obtained for the parameters are B=897, C=2144, Dq=910 and α=76 cm−1.  相似文献   

16.
In this paper, we give an alternative suggestion that both the observed optical and electron paramagnetic resonance (EPR) spectra of Yttrium oxide (Y2O3):V3+ are attributed to V3+ ions at the S6 site of Y2O3. This suggestion is different from the opinion in the previous paper that the optical and EPR spectra are attributed to V3+ ions at the C2 and S6 sites, respectively. From the suggestion, the optical band positions and spin-Hamiltonian parameters are calculated by diagonalizing the complete energy matrix for 3d2 ions in trigonal symmetry. The results are in good agreement with the experimental values, suggesting that both the observed optical and EPR spectra in Y2O3:V3+ may be due to V3+ at S6 site of Y2O3 crystal.  相似文献   

17.
Electron paramagnetic resonance (EPR) spectra of Cu2+ ion in ammonium dihydrogen phosphate are studied at liquid nitrogen temperature (77 K). Four magnetically inequivalent Cu2+ sites in the lattice are identified. The angular variation spectra of the crystal in the three orthogonal planes indicate that the paramagnetic impurity, Cu2+ enters the lattice substitutionally in place of NH4+ ions. The spin Hamiltonian parameters are determined with the fitting of spectra to rhombic symmetry crystalline field. The ground state wave function of Cu2+ ion is constructed and found to be predominantly |x2-y2〉. The cubic field parameter (Dq) and tetragonal parameters (Ds and Dt) are determined from optical spectra at room temperature. By correlating EPR and optical absorption spectra, the bonding coefficients are calculated and nature of bonding of metal ion with different ligands in the crystal is discussed.  相似文献   

18.
The ESR spectrum of Mn2+ doped potassium hydrogen sulphate at liquid nitrogen temperature (77 K) has been analyzed and site of entered Mn2+ in the lattice has been discussed. The values of the zero field parameters that give good fit to the observed ESR spectra have been obtained. The obtained g, A, B, D, E and a values are 2.0002, 66×10−4 cm−1, 26×10−4 cm−1, 59×10−4 cm−1, 32×10−4 cm−1 and −8×10−4 cm−1, respectively. The percentage of covalency of the metal-ligand bond has also been estimated. From the optical absorption study at room temperature, the distortion has been suggested. The observed bands are assigned as transitions from the 6A1g(S) ground state to various excited quartet levels of Mn2+ ion in a cubic crystalline field. The electron repulsion and crystal field parameters B, C, Dq and α providing good fit to the observed optical spectra have been evaluated and the values obtained for the parameters are B=627 cm−1, C=2580 cm−1 , Dq=790 cm−1 and α=76 cm−1.  相似文献   

19.
The domain structure of ferroelastic BiVO4 single crystal has been investigated using the electron paramagnetic resonance (EPR) of the Gd3+ ions existing as an impurity in the crystal. Two sets of Gd3+ EPR signals were obtained in the crystallographic ca-plane. These two sets of signals originated not from the two kinds of substitutional sites but from the twin-domain structure in the host crystal. It is found that the BiVO4 crystal investigated with Gd3+ EPR has the prominent (W-plane) domain wall. The domain structure is stable in contrast with a previous report by Baran et al. From the observed W-plane of the domain wall, it is suggested that a ferroelastic transition in BiVO4 is 4/mmm F 2/m instead of 4/m F 2/m. The model of twinning mechanism improved in a previous report by Mn2+ EPR is confirmed by Gd3+ EPR.  相似文献   

20.
EPR spectra of Cr3+ ions doped in potassium sodium dl-tartrate tetrahydrate single crystals are recorded at 77 K. The spin Hamiltonian and zero field parameters g, |D| and |E| are measured from the resonance lines obtained at various rotations of the magnetic field. The values obtained are: gx=1.9257±0.0002, gy=1.9720±0.0002, gz=2.0102±0.0002, |D|=313±2 (×10−4) cm−1 and |E|=101±2 (×10−4) cm−1. From the results of EPR study, the site symmetry of Cr3+ ion in the crystal is discussed. The optical absorption at room temperature is also studied. From the observed band positions, the crystal field splitting parameter (Dq) and the Racah inter-electronic repulsion parameters (B and C) are evaluated. The bonding parameters are obtained by correlating optical and EPR data and the nature of bonding in the crystal is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号