首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A detailed experimental study is performed on the separated flow structures around a low aspect-ratio circular cylinder (pin-fin) in a practical configuration of liquid cooling channel. Distinctive features of the present arrangement are the confinement of the cylinder at both ends, water flow at low Reynolds numbers (Re = 800, 1800, 2800), very high core flow turbulence and undeveloped boundary layers at the position of the obstacle. The horseshoe vortex system at the junctions between the cylinder and the confining walls and the near wake region behind the obstacle are deeply investigated by means of Particle Image Velocimetry (PIV). Upstream of the cylinder, the horseshoe vortex system turns out to be perturbed by vorticity bursts from the incoming boundary layers, leading to aperiodical vortex oscillations at Re = 800 or to break-away and secondary vorticity eruptions at the higher Reynolds numbers. The flow structures in the near wake show a complex three-dimensional behaviour associated with a peculiar mechanism of spanwise mass transport. High levels of free-stream turbulence trigger an early instabilization of the shear layers and strong Bloor–Gerrard vortices are observed even at Re = 800. Coalescence of these vortices and intense spanwise flow inhibit the alternate primary vortex shedding for time periods whose length and frequency increase as the Reynolds number is reduced. The inhibition of alternate vortex shedding for long time periods is finally related to the very large wake characteristic lengths and to the low velocity fluctuations observed especially at the lowest Reynolds number.  相似文献   

2.
Turbulent coherent structures near a rod-roughened wall are scrutinized by analyzing instantaneous flow fields obtained from direct numerical simulations (DNSs) of a turbulent boundary layer (TBL). The roughness elements used are periodically arranged two-dimensional spanwise rods, and the roughness height is k/δ = 0.05 where δ is the boundary layer thickness. The Reynolds number based on the momentum thickness is varied in the range Reθ = 300–1400. The effect of surface roughness is examined by comparing the characteristics of the TBLs over smooth and rough walls. Although introduction of roughness elements onto the smooth wall affects the Reynolds stresses throughout the entire boundary layer when scaled by the friction velocity, the roughness has little effect on the vorticity fluctuations in the outer layer. Pressure-strain tensors of the transport equation for the Reynolds stresses and quadrant analysis disclose that the redistribution of turbulent kinetic energy of the rough wall is similar to that of the smooth wall, and that the roughness has little effect on the relative contributions of ejection and sweep motions in the outer layer. To elucidate the modifications of the near-wall vortical structure induced by surface roughness, we used two-point correlations, joint weighted probability density function, and linear stochastic estimation. Finally, we demonstrate the existence of coherent structures in the instantaneous flow field over the rod-roughened surface.  相似文献   

3.
An experimental investigation of flow structures downstream of a circular cylinder and sphere immersed in a free-stream flow is performed for Re = 5000 and 10,000 using qualitative and quantitative flow visualization techniques. The obtained results are presented in terms of time-averaged velocity vectors, patterns of streamlines, vorticity, Reynolds stress correlations and turbulent kinetic energy distributions. Flow data reveal that the size of wake flow region, the location of singular and double points, the peak values of turbulence quantities, such as Reynolds stress correlations, vorticity fluctuations and turbulent kinetic energy vary as a function of models’ geometry and Reynolds Numbers. The concentration of small scale vortices is more dominant in the wake of the sphere than that of the cylinder. The maximum value of turbulent kinetic energy (TKE) occurs close to the saddle point for the cylinder case while two maximum values of TKE occur along shear layers for the sphere one because of the 3-D flow behavior.  相似文献   

4.
An experimental investigation of flow structures downstream of a circular cylinder and sphere immersed in a free-stream flow is performed for Re = 5000 and 10,000 using qualitative and quantitative flow visualization techniques. The obtained results are presented in terms of time-averaged velocity vectors, patterns of streamlines, vorticity, Reynolds stress correlations and turbulent kinetic energy distributions. Flow data reveal that the size of wake flow region, the location of singular and double points, the peak values of turbulence quantities, such as Reynolds stress correlations, vorticity fluctuations and turbulent kinetic energy vary as a function of models’ geometry and Reynolds Numbers. The concentration of small scale vortices is more dominant in the wake of the sphere than that of the cylinder. The maximum value of turbulent kinetic energy (TKE) occurs close to the saddle point for the cylinder case while two maximum values of TKE occur along shear layers for the sphere one because of the 3-D flow behavior.  相似文献   

5.
The mean wake of a surface-mounted finite-height square prism was studied experimentally in a low-speed wind tunnel to explore the combined effects of incidence angle (α) and aspect ratio (AR). Measurements of the mean wake velocity field were made with a seven-hole pressure probe for finite square prisms of AR = 9, 7, 5 and 3, at a Reynolds number of Re = 3.7 × 104, for incidence angles from α = 0° to 45°. The relative thickness of the boundary layer on the ground plane, compared to the prism width, was δ/D = 1.5. As the incidence angle increases from α = 0° to 15°, the mean recirculation zone shortens and the mean wake shifts in the direction opposite to that of the mean lift force. The downwash is also deflected to this side of the wake and the mean streamwise vortex structures in the upper part of the wake become strongly asymmetric. The shortest mean recirculation zone, and the greatest asymmetry in the mean wake, is found at the critical incidence angle of αcritical  15°. As the incidence angle increases from α = 15° to 45°, the mean recirculation zone lengthens and the mean streamwise vortex structures regain their symmetry. These vortices also elongate in the wall-normal direction and become contiguous with the horseshoe vortex trailing arms. The mean wake of the prism of AR = 3 has some differences, such as an absence of induced streamwise vorticity near the ground plane, which support its classification as lying below the critical aspect ratio for the present flow conditions.  相似文献   

6.
This paper represents the results of an experimental study on the flow structure around a single sphere and three spheres in an equilateral-triangular arrangement. Flow field measurements were performed using a Particle Image Velocimetry (PIV) technique and dye visualization in an open water channel for a Reynolds number of Re = 5 × 103 based on the sphere diameter. The distributions and flow features at the critical locations of the contours of the velocity fluctuations, the patterns of sectional streamlines, the vorticity contours, the turbulent kinetic energy, the Reynolds stress correlations and shedding frequency are discussed. The gap ratios (G/D) of the three spheres were varied in the range of 1.0  G/D  2.5 where G was the distance between the sphere centers, and D was the sphere diameter which was taken as 30 mm. Due to the interference of the shedding shear layers and the wakes, more complex features of the flow patterns can be found in the wake region of the two downstream spheres behind the leading sphere. For G/D = 1.25, a jet-like flow around the leading sphere through the gap between the two downstream spheres occurred, which significantly enhanced the wake region. It was observed that a continuous flow development involving shearing phenomena and the interactions of shedding vortices caused a high rate of fluctuations over the whole flow field although most of the time-averaged flow patterns were almost symmetric about the two downstream spheres.  相似文献   

7.
An experimental investigation on flow around an oscillating bubble and solid ellipsoid with a flat bottom was conducted. A single air bubble (equivalent diameter De=9.12 mm) was attached to a small disk (∼1 mm) at the end of a needle and suspended across a vertical square channel (100 mm) by wire wherein water flowed downward at a constant flowrate. The solid ellipsoid (De∼9.1 mm) was suspended across the square channel in the same manner. The equivalent diameter-based Reynolds and Eotvos number range, 1950<Re<2250 and 11<Eo<11.5, placed the bubble in the ‘wobbly’ regime while the flow in its wake was turbulent. A constant flowrate and one bubble size was used such that flow in the wake was turbulent. Velocity measurements of the flow field around the bubble or solid were made using a one CCD camera Digital Particle Image Velocimetry (DPIV) system enhanced by Laser Induced Fluorescence (LIF). The shape of the bubble or solid was simultaneously recorded along with the velocity using a second CCD camera and an Infrared Shadow Technique (IST). In this way both the flow-field and the boundary of the bubble (solid) were measured. The velocity vector plots of flow around and in the wake of a bubble/solid, supplemented by profiles and contours of the average and root-mean-square velocities, vorticity, Reynolds stress and turbulent kinetic energy, revealed differences in the wake flow structure behind a bubble and solid. One of the significant differences was in the inherent, oscillatory motion of the bubble which not only produced vorticity in the near-wake, but as a result of apparent vorticity stretching distributed the turbulent kinetic energy associated with this flow more uniformly on its wake, in contrast to the solid.  相似文献   

8.
Coherent structures (CS) are educed using a conditional sampling technique involving alignment of vorticity patches of largest size and strength; hence we educe dominant CS. A numerically simulated spatially evolving wake of a thick flat plate is used as the database, and the inflow condition for the simulated wake includes random velocity perturbations which emulate turbulent conditions at a plate exit in the laboratory. In addition to previously educed properties such as coherent vorticity and production, and incoherent Reynolds stress and turbulence intensity, other measures such as coherent pressure and passive scalar distributions are also studied. In spite of the geometry difference, the near-wake dynamics of the plate seem quite similar to that of a cylinder. For example, turbulence is mostly produced by vortex stretching of the ribs at the saddle and then advected to the structure center, where it accumulates, and is balanced by incoherent dissipation. The distribution of coherent passive scalar indicates that mixing occurs in the saddle regions and that the mixed fluid is advected into the structure center.  相似文献   

9.
Proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) were used to extract the coherent structures in turbulent cavity flows. The spatiotemporal representation of the modes was achieved by performing the circular convolution of a change of basis on the data sequence, wherein the transformation function was extracted from the POD or DMD. The spatiotemporal representation of the modes provided significant insight into the evolutionary behavior of the structures. Self-sustained oscillations arise in turbulent cavity flows due to unsteady separation at the leading edge. The turbulent cavity flow at ReD = 12,000 and a length to depth ratio L/D = 2 was analyzed. The dynamic modes extracted from the data clarified the presence of self-sustained oscillations. The spatiotemporal representation of the POD and DMD modes that caused self-sustained oscillations revealed the prevalent dynamics and evolutionary behavior of the coherent structures from their formation at the leading edge to their impingement at the trailing edge. A local minimum in the mode amplitude representing the energy contributions to the flow was observed upon the impingement of coherent structure at the trailing edge. The modal energy associated with the periodic formation of organized coherent structures followed by their dissipation upon impingement revealed the oscillatory behavior over time.  相似文献   

10.
The experimental investigations were carried out in order to have detailed information on the flow structure around perforated cylinders using high-image density Particle Image Velocimetry technique in shallow water flow. The depth-averaged free-stream velocity was kept constant as U=100 mm/s corresponding to the Reynolds number of Re=10 000 based on the perforated cylinder diameter. In order to analyze the effect of porosity, β on the flow structure, the porosities in the range of 0.1≤β≤0.8 with an increment of 0.1 were used and the results were compared with the bare cylinder case by means of velocity and vorticity contours, turbulent kinetic energy, Reynolds shear stress and streamline topologies. It was concluded that the porosity, β had a substantial effect on the control of large-scale vortical structures downstream of the cylinder in which the shear layers were elongated, fluctuations were significantly attenuated and formation of Karman Vortex Street was successfully prevented by the use of perforated cylinders.  相似文献   

11.
The flow field over a low aspect ratio (AR) circular pillar (L/D = 1.5) in a microchannel was studied experimentally. Microparticle image velocimetry (μPIV) was employed to quantify flow parameters such as flow field, spanwise vorticity, and turbulent kinetic energy (TKE) in the microchannel. Flow regimes of cylinder-diameter-based Reynolds number at 100  ReD  700 (i.e., steady, transition from quasi-steady to unsteady, and unsteady flow) were elucidated at the microscale. In addition, active flow control (AFC), via a steady control jet (issued from the pillar itself in the downstream direction), was implemented to induce favorable disturbances to the flow in order to alter the flow field, promote turbulence, and increase mixing. Together with passive flow control (i.e., a circular pillar), turbulent kinetic energy was significantly increased in a controllable manner throughout the flow field.  相似文献   

12.
Influence of wall proximity on characteristics of the wake behind a two-dimensional square cylinder was experimentally studied in the present work. A low-speed recirculation water channel was established for the experiment; the Reynolds number based on the free-stream velocity and cylinder width (D) was kept at ReD = 2250. Four cases with different gap width, e.g., G/D = 0.1, 0.2, 0.4 and 0.8, were chosen for comparison. Two experimental techniques, e.g., the standard PIV with high image-density CCD camera and TR-PIV with a high-speed camera were employed in measuring the wake field, enabling a comprehensive view of the time-averaged wake pattern at high spatial resolution and the instantaneous flow field at high temporal resolution, respectively. For the four cases, the difference in spatial characteristics of the wake in the vicinity of the plane wall was analyzed in terms of the time-averaged quantities measured by the standard PIV, e.g., the streamline pattern, the vector field, the streamwise velocity fluctuation intensity and the reverse-flow intermittency. The proper orthogonal decomposition (POD) method was extensively used to decompose the TR-PIV measurements, giving a close-up view of the energetic POD modes buried in the wake. The low-order flow model of the wake at G/D = 0.8 and 0.4 was constructed by using the linear combination of the first two POD modes and the time-mean flow field, which reflected well the vortex shedding process in the sense of the phase-dependent patterns. The intermittent appearance of the weakly separated region near the wall was found at G/D = 0.4. On going from G/D = 0.8 to 0.4, the remarkable variation of the instantaneous wake in the longitudinal direction confirmed that the wall constraint stretches the vortices in the plane of the wall and transfers the energy to the longitudinal component at the expense of the lateral one.  相似文献   

13.
This work aims at investigating the mechanisms of separation and the transition to turbulence in the separated shear-layer of aerodynamic profiles, while at the same time to gain insight into coherent structures formed in the separated zone at low-to-moderate Reynolds numbers. To do this, direct numerical simulations of the flow past a NACA0012 airfoil at Reynolds numbers Re = 50,000 (based on the free-stream velocity and the airfoil chord) and angles of attack AOA = 9.25° and AOA = 12° have been carried out. At low-to-moderate Reynolds numbers, NACA0012 exhibits a combination of leading-edge/trailing-edge stall which causes the massive separation of the flow on the suction side of the airfoil. The initially laminar shear layer undergoes transition to turbulence and vortices formed are shed forming a von Kármán like vortex street in the airfoil wake. The main characteristics of this flow together with its main features, including power spectra of a set of selected monitoring probes at different positions on the suction side and in the wake of the airfoil are provided and discussed in detail.  相似文献   

14.
This work aims to investigate how the presence of a downstream cylinder affects the passive scalar transport in a cylinder wake. The wake was generated by two tandem brass circular cylinders of the same diameter (d). The cylinder centre-to-centre spacing L/d was 1.3, 2.5 and 4.0, respectively, covering the three typical flow regimes of this flow. The upstream cylinder was slightly heated. Measurements were conducted at x/d= 10 and Re (≡ dU /ν, where U is the free-stream velocity and ν is the kinematic viscosity of fluid) = 7000. A three-wire probe consisting of an X-wire and a cold wire was used to measure the velocity and temperature fluctuations, while an X-wire provided a phase reference. The phase-averaged velocity vectors and vorticity display single vortex street behind the downstream cylinder, irrespective of the flow regimes. However, the detailed flow structure exhibits strong dependence on L/d in terms of the Strouhal number, the vortex strength and its downstream evolution. This naturally affects passive scalar transport. The coherent and incoherent heat flux vectors show significant variation for different L/d.  相似文献   

15.
Vortex structures and heat transfer enhancement mechanism of turbulent flow over a staggered array of dimples in a narrow channel have been investigated using Large Eddy Simulation (LES), Laser Doppler Velocimetry (LDV) and pressure measurements for Reynolds numbers ReH = 6521 and ReH = 13,042.The flow and temperature fields are calculated by LES using dynamic mixed model applied both for the velocity and temperature. Simulations have been validated with experimental data obtained for smooth and dimpled channels and empiric correlations. The flow structures determined by LES inside the dimple are chaotic and consist of small eddies with a broad range of scales where coherent structures are hardly to detect. Proper Orthogonal Decomposition (POD) method is applied on resolved LES fields of pressure and velocity to identify spatial–temporal structures hidden in the random fluctuations. For both Reynolds numbers it was found that the dimple package with a depth h to diameter D ratio of h/D = 0.26 provides the maximum thermo-hydraulic performance. The heat transfer rate could be enhanced up to 201% compared to a smooth channel.  相似文献   

16.
 Unsteady turbulent near wake of a rectangular cylinder in channel flow has been studied experimentally with a laser Doppler velocimetry (LDV). The time-averaged and phase-averaged statistics were measured for the cylinders having various width-to-height ratios, b/h. It is shown that the turbulent intensities on the centerline of the channel have their maxima near the rear stagnation point of a recirculation region. The contours of coherent vorticity and streamline reproduce clearly the shed vortices from the cylinder observed by the flow visualization. The characteristics of the flow field, which depends on b/h, are discussed and the significant contribution of the coherent structure to the flow field is clarified. Moreover, the turbulent kinetic energy budget has been examined. Received: 19 January 1998/Accepted: 21 July 1998  相似文献   

17.
A numerical study of the alteration of a square cylinder wake using a detached downstream thin flat plate is presented. The wake is generated by a uniform flow of Reynolds number 150 based on the side length of the cylinder, D. The sensitivity of the near wake structure to the downstream position of the plate is investigated by varying the gap distance (G) along the wake centerline in the range 0  G  7D for a constant plate length of L = D. A critical gap distance is observed to occur at Gc  2.3D that indicates the existence of two flow regimes. Regime I is characterised by vortex formation occurring downstream of the gap while for regime II, formation occurs within the gap. By varying the plate length and gap distance, a condition is found where significant unsteady total lift reduction can occur. The root mean square lift reduction is limited by an unsteady stall process on the plate.  相似文献   

18.
The flow above the free ends of surface-mounted finite-height circular cylinders and square prisms was studied experimentally using particle image velocimetry (PIV). Cylinders and prisms with aspect ratios of AR = 9, 7, 5, and 3 were tested at a Reynolds number of Re = 4.2 × 104. The bodies were mounted normal to a ground plane and were partially immersed in a turbulent zero-pressure-gradient boundary layer, where the boundary layer thickness relative to the body width was δ/D = 1.6. PIV measurements were made above the free ends of the bodies in a vertical plane aligned with the flow centreline. The present PIV results provide insight into the effects of aspect ratio and body shape on the instantaneous flow field. The recirculation zone under the separated shear layer is larger for the square prism of AR = 3 compared to the more slender prism of AR = 9. Also, for a square prism with low aspect ratio (AR = 3), the influence of the reverse flow over the free end surface becomes more significant compared to that for a higher aspect ratio (AR = 9). For the circular cylinder, a cross-stream vortex forms within the recirculation zone. As the aspect ratio of the cylinder decreases, the reattachment point of the separated flow on the free end surface moves closer to the trailing edge. For both the square prism and circular cylinder cases, the instantaneous velocity vector field and associated in-plane vorticity field revealed small-scale structures mostly generated by the separated shear layer.  相似文献   

19.
In the present study, flow control mechanism of single groove on a circular cylinder surface is presented experimentally using Particle image velocimetry (PIV). A square shaped groove is patterned longitudinally on the surface of the cylinder with a diameter of 50 mm. The flow characteristics are studied as a function of angular position of the groove from the forward stagnation point of the cylinder within 0°  θ  150°. In the current work, instantaneous and time-averaged flow data such as vorticity, ω streamline, Ψ streamwise, u/Uo and transverse, v/Uo velocity components, turbulent kinetic energy, TKE and RMS of streamwise, urms and transverse, vrms velocity components are utilized in order to present the results of quantitative analyses. Furthermore, Strouhal numbers are calculated using Karman vortex shedding frequency, fk obtained from single point spectral analysis. It is concluded that a critical angular position of the groove, θ = 80° is observed. The flow separation is controlled within 0°  θ < 80°. At θ = 80°, the flow separation starts to occur in the upstream direction. The instability within the shear layer is also induced on grooved side of the cylinder with frequencies different than Karman vortex shedding frequency, fk.  相似文献   

20.
The shedding process in the near wake of a surface-mounted, square cross-section cylinder of height-to-width aspect ratio 4 at a Reynolds number of 12,000 based on free-stream velocity and the obstacle width was investigated. The boundary layer thickness was 0.18 obstacle heights based on 99% free-stream velocity. The study is performed using planar high frame-rate particle image velocimetry synchronized with pressure measurements and hot-wire anemometry. Spatial cross-correlation, instantaneous phase relationships, and phase-averaged velocity data are reported. Two dominant vortex-shedding regimes are observed. During intervals of high-amplitude pressure fluctuations on the obstacle side faces, alternate formation and shedding of vortices is observed (regime A) similar to the von Kármán process. Regime B is characterized by two co-existing vortices in the obstacle lee throughout the shedding cycle and is observed within low-amplitude pressure fluctuation intervals. Despite the coexisting vortices in the base region, opposite sign vorticity is still shed out-of-phase downstream of this vortex pair giving rise to a staggered arrangement of counter-rotating vortices downstream. While the probability of occurrence of Regime B increases toward the free end, the amplitude modulation remains coherent along the obstacle height. Conditionally phase-averaged reconstructions of the flow field are consistent with the spatial distribution of the phase relationships and their probability density function. Earlier observations are reconciled showing that the symmetric shedding of vortices is a rare occurrence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号