首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let \({\mathcal L}\equiv-\Delta+V\) be the Schrödinger operator in \({{\mathbb R}^n}\), where V is a nonnegative function satisfying the reverse Hölder inequality. Let ρ be an admissible function modeled on the known auxiliary function determined by V. In this paper, the authors characterize the localized Hardy spaces \(H^1_\rho({{\mathbb R}^n})\) in terms of localized Riesz transforms and establish the boundedness on the BMO-type space \({\mathop\mathrm{BMO_\rho({\mathbb R}^n)}}\) of these operators as well as the boundedness from \({\mathop\mathrm{BMO_\rho({\mathbb R}^n)}}\) to \({\mathop\mathrm{BLO_\rho({\mathbb R}^n)}}\) of their corresponding maximal operators, and as a consequence, the authors obtain the Fefferman–Stein decomposition of \({\mathop\mathrm{BMO_\rho({\mathbb R}^n)}}\) via localized Riesz transforms. When ρ is the known auxiliary function determined by V, \({\mathop\mathrm{BMO_\rho({\mathbb R}^n)}}\) is just the known space \(\mathop\mathrm{BMO}_{\mathcal L}({{\mathbb R}^n})\), and \({\mathop\mathrm{BLO_\rho({\mathbb R}^n)}}\) in this case is correspondingly denoted by \(\mathop\mathrm{BLO}_{\mathcal L}({{\mathbb R}^n})\). As applications, when n?≥?3, the authors further obtain the boundedness on \(\mathop\mathrm{BMO}_{\mathcal L}({{\mathbb R}^n})\) of Riesz transforms \(\nabla{\mathcal L}^{-1/2}\) and their adjoint operators, as well as the boundedness from \(\mathop\mathrm{BMO}_{\mathcal L}({{\mathbb R}^n})\) to \(\mathop\mathrm{BLO}_{\mathcal L}({{\mathbb R}^n})\) of their maximal operators. Also, some endpoint estimates of fractional integrals associated to \({\mathcal L}\) are presented.  相似文献   

2.
We study inverse scattering problems at a fixed energy for radial Schrödinger operators on \({\mathbb{R}^n}\), \({n \geq 2}\). First, we consider the class \({\mathcal{A}}\) of potentials q(r) which can be extended analytically in \({\Re z \geq 0}\) such that \({\mid q(z)\mid \leq C \ (1+ \mid z \mid )^{-\rho}}\), \({\rho > \frac{3}{2}}\). If q and \({\tilde{q}}\) are two such potentials and if the corresponding phase shifts \({\delta_l}\) and \({\tilde{\delta}_l}\) are super-exponentially close, then \({q=\tilde{q}}\). Second, we study the class of potentials q(r) which can be split into q(r) = q 1(r) + q 2(r) such that q 1(r) has compact support and \({q_2 (r) \in \mathcal{A}}\). If q and \({\tilde{q}}\) are two such potentials, we show that for any fixed \({a>0, {\delta_l - \tilde{\delta}_l \ = \ o \left(\frac{1}{l^{n-3}}\ \left({\frac{ae}{2l}}\right)^{2l}\right)}}\) when \({l \rightarrow +\infty}\) if and only if \({q(r)=\tilde{q}(r)}\) for almost all \({r \geq a}\). The proofs are close in spirit with the celebrated Borg–Marchenko uniqueness theorem, and rely heavily on the localization of the Regge poles that could be defined as the resonances in the complexified angular momentum plane. We show that for a non-zero super-exponentially decreasing potential, the number of Regge poles is always infinite and moreover, the Regge poles are not contained in any vertical strip in the right-half plane. For potentials with compact support, we are able to give explicitly their asymptotics. At last, for potentials which can be extended analytically in \({\Re z \geq 0}\) with \({\mid q(z)\mid \leq C (1+ \mid z \mid)^{-\rho}}\), \({\rho >1}\), we show that the Regge poles are confined in a vertical strip in the complex plane.  相似文献   

3.
Let \({\mathcal{P} \subset \mathbb{R}^{d}}\) and \({\mathcal{Q} \subset \mathbb{R}^{e}}\) be integral convex polytopes of dimension d and e which contain the origin of \({\mathbb{R}^{d}}\) and \({\mathbb{R}^{e}}\), respectively. We say that an integral convex polytope \({\mathcal{P}\subset \mathbb{R}^{d}}\) possesses the integer decomposition property if, for each \({n\geq1}\) and for each \({\gamma \in n\mathcal{P}\cap\mathbb{Z}^{d}}\), there exist \({\gamma^{(1)}, . . . , \gamma^{(n)}}\) belonging to \({\mathcal{P}\cap\mathbb{Z}^{d}}\) such that \({\gamma = \gamma^{(1)} +. . .+\gamma^{(n)}}\). In the present paper, under some assumptions, the necessary and sufficient condition for the free sum of \({\mathcal{P}}\) and \({\mathcal{Q}}\) to possess the integer decomposition property will be presented.  相似文献   

4.
For p, q > 0 we study operators T on the Bergman space \({A_{2}(\mathbb{D)}}\) in the disk such that \({\left(\sum_{j}\Vert T\Delta_{j}\Vert_{p}^{q}\right)^{1/q}<\infty,}\) where the norms \({\Vert\cdot\Vert_{p}}\) are in the Schatten class S p (A 2), the projection \({\Delta_{j}f=\sum_{n\in I_{j}}a_{n}z^{n}}\) for \({f(z)=\sum_{n=0}^{\infty}a_{n}z^{n}}\) and \({I_{j}=[2^{j}-1,2^{j+1} )\cap(\mathbb{N}\cup\{0\})}\) for \({j\in\mathbb{N}\cup\{0\}.}\) We consider the relation of this property with mixed norms of the Berezin transform of T and of the related function \({f_{T}(z)={\Vert}T(k_{z})\Vert}\) where k z is the normalized Bergman kernel. These classes of operators denoted by S(p, q) are closely related when assumed to be positive with other sets of operators, like the class of positive operators on A 2 for which \({\left(\sum_{j\geq0}(\sum_{n\in I_{j}}|\left\langle T^pe_{n},e_{n}\right\rangle |)^{q/p}\right)^{1/q}<\infty}\) , where \({\{e_{n}\}_{n\geq0}}\) is the canonical basis of A 2; also we study the relation of Toeplitz operators in S(p, q) with the Schatten-Herz classes, where the decomposition is through dyadic annuli of the domain \({\mathbb{D}}\) .  相似文献   

5.
Let \(\mathcal S\) be an abelian group of automorphisms of a probability space \((X, {\mathcal A}, \mu )\) with a finite system of generators \((A_1, \ldots , A_d).\) Let \(A^{{\underline{\ell }}}\) denote \(A_1^{\ell _1} \ldots A_d^{\ell _d}\), for \({{\underline{\ell }}}= (\ell _1, \ldots , \ell _d).\) If \((Z_k)\) is a random walk on \({\mathbb {Z}}^d\), one can study the asymptotic distribution of the sums \(\sum _{k=0}^{n-1} \, f \circ A^{\,{Z_k(\omega )}}\) and \(\sum _{{\underline{\ell }}\in {\mathbb {Z}}^d} {\mathbb {P}}(Z_n= {\underline{\ell }}) \, A^{\underline{\ell }}f\), for a function f on X. In particular, given a random walk on commuting matrices in \(SL(\rho , {\mathbb {Z}})\) or in \({\mathcal M}^*(\rho , {\mathbb {Z}})\) acting on the torus \({\mathbb {T}}^\rho \), \(\rho \ge 1\), what is the asymptotic distribution of the associated ergodic sums along the random walk for a smooth function on \({\mathbb {T}}^\rho \) after normalization? In this paper, we prove a central limit theorem when X is a compact abelian connected group G endowed with its Haar measure (e.g., a torus or a connected extension of a torus), \(\mathcal S\) a totally ergodic d-dimensional group of commuting algebraic automorphisms of G and f a regular function on G. The proof is based on the cumulant method and on preliminary results on random walks.  相似文献   

6.
Minimal Polynomial Extrapolation (MPE) and Reduced Rank Extrapolation (RRE) are two polynomial methods used for accelerating the convergence of sequences of vectors {x m }. They are applied successfully in conjunction with fixed-point iterative schemes in the solution of large and sparse systems of linear and nonlinear equations in different disciplines of science and engineering. Both methods produce approximations s k to the limit or antilimit of {x m } that are of the form \(\boldsymbol {s}_{k}={\sum }^{k}_{i=0}\gamma _{i}\boldsymbol {x}_{i}\) with \({\sum }^{k}_{i=0}\gamma _{i}=1\), for some scalars γ i . The way the two methods are derived suggests that they might, somehow, be related to each other; this has not been explored so far, however. In this work, we tackle this issue and show that the vectors \(\boldsymbol {s}_{k}^{\textit {{\tiny {MPE}}}}\) and \(\boldsymbol {s}_{k}^{\textit {{\tiny {RRE}}}}\) produced by the two methods are related in more than one way, and independently of the way the x m are generated. One of our results states that RRE stagnates, in the sense that \(\boldsymbol {s}_{k}^{\textit {{\tiny {RRE}}}}=\boldsymbol {s}_{k-1}^{\textit {{\tiny {RRE}}}}\), if and only if \(\boldsymbol {s}_{k}^{\textit {{\tiny {MPE}}}}\) does not exist. Another result states that, when \(\boldsymbol {s}_{k}^{\textit {{\tiny {MPE}}}}\) exists, there holds
$$\mu_{k}\boldsymbol{s}_{k}^{\textit{{\tiny{RRE}}}}=\mu_{k-1}\boldsymbol{s}_{k-1}^{\textit{{\tiny{RRE}}}}+ \nu_{k}\boldsymbol{s}_{k}^{\textit{{\tiny{MPE}}}}\quad \text{with}\quad \mu_{k}=\mu_{k-1}+\nu_{k}, $$
for some positive scalars μ k , μ k?1, and ν k that depend only on \(\boldsymbol {s}_{k}^{\textit {{\tiny {RRE}}}}\), \(\boldsymbol {s}_{k-1}^{\textit {{\tiny {RRE}}}}\), and \(\boldsymbol {s}_{k}^{\textit {{\tiny {MPE}}}}\), respectively. Our results are valid when MPE and RRE are defined in any weighted inner product and the norm induced by it. They also contain as special cases the known results pertaining to the connection between the method of Arnoldi and the method of generalized minimal residuals, two important Krylov subspace methods for solving nonsingular linear systems.
  相似文献   

7.
Gosper introduced the functions sinqz and cosqz as q-analogues for the trigonometric functions sin z and cos z respectively. He stated a variety of identities involving these two q-trigonometric functions along with certain constants denoted by \({\Pi _{{q^n}}}\) (n ∈ N). Gosper noticed that all his formulas on these constants have more than two of the \({\Pi _{{q^n}}}\). So, it is natural to raise the question of establishing identities involving only two of the \({\Pi _{{q^n}}}\). In this paper, our main goal is to give examples of such formulas in only two \({\Pi _{{q^n}}}\).  相似文献   

8.
The zero divisor of the theta function of a compact Riemann surface X of genus g is the canonical theta divisor of Pic\({^{(g-1)}}\) up to translation by the Riemann constant \({\Delta}\) for a base point P of X. The complement of the Weierstrass gaps at the base point P gives a numerical semigroup, called the Weierstrass semigroup. It is classically known that the Riemann constant \({\Delta}\) is a half period, namely an element of \({\frac{1}{2}\Gamma_\tau}\) , for the Jacobi variety \({\mathcal{J}(X)=\mathbb{C}^{g}/\Gamma_\tau}\) of X if and only if the Weierstrass semigroup at P is symmetric. In this article, we analyze the non-symmetric case. Using a semi-canonical divisor D0, we express the relation between the Riemann constant \({\Delta}\) and a half period in the non-symmetric case. We point out an application to an algebraic expression for the Jacobi inversion problem. We also identify the semi-canonical divisor D0 for trigonal pointed curves, namely with total ramification at P.  相似文献   

9.
Let B be an Archimedean reduced f-ring. A positive element \({\omega}\) in B is said to satisfy the property \({(\ast)}\) if for every f-ring A with identity e and every \({\ell}\)-group homomorphism \({\gamma : A \rightarrow B}\) with \({\gamma(e) = \omega}\), there exists a unique \({\ell}\)-ring homomorphism \({\rho: B \rightarrow B}\) such that \({\gamma = \omega \rho}\) and \({\rho(e)^{\perp \perp} = \omega^{\perp \perp}}\). Boulabiar and Hager proved that any (positive) von Neumann regular element in B satisfies the property \({(\ast)}\) and proved that the converse holds in the C(X)-case. In this regard, they asked about this converse in the general case. Our main purpose in this note is to prove, via a counter-example, that the converse in question fails in general. In addition, we shall take the opportunity to extend the direct result obtained by Boulabiar and Hager, and to get the C(X)-case we were talking about in an easier way.  相似文献   

10.
The rank of a scattered \({\mathbb F}_q\)-linear set of \({{\mathrm{{PG}}}}(r-1,q^n)\), rn even, is at most rn / 2 as it was proved by Blokhuis and Lavrauw. Existence results and explicit constructions were given for infinitely many values of r, n, q (rn even) for scattered \({\mathbb F}_q\)-linear sets of rank rn / 2. In this paper, we prove that the bound rn / 2 is sharp also in the remaining open cases. Recently Sheekey proved that scattered \({\mathbb F}_q\)-linear sets of \({{\mathrm{{PG}}}}(1,q^n)\) of maximum rank n yield \({\mathbb F}_q\)-linear MRD-codes with dimension 2n and minimum distance \(n-1\). We generalize this result and show that scattered \({\mathbb F}_q\)-linear sets of \({{\mathrm{{PG}}}}(r-1,q^n)\) of maximum rank rn / 2 yield \({\mathbb F}_q\)-linear MRD-codes with dimension rn and minimum distance \(n-1\).  相似文献   

11.
Let M be a smooth compact oriented Riemannian manifold, and let Δ M be the Laplace–Beltrami operator on M. Say \({0 \neq f \in \mathcal{S}(\mathbb {R}^+)}\) , and that f (0)  =  0. For t  >  0, let K t (x, y) denote the kernel of f (t 2 Δ M ). We show that K t is well-localized near the diagonal, in the sense that it satisfies estimates akin to those satisfied by the kernel of the convolution operator f (t 2Δ) on \({\mathbb {R}^n}\) . We define continuous \({\mathcal {S}}\)-wavelets on M, in such a manner that K t (x, y) satisfies this definition, because of its localization near the diagonal. Continuous \({\mathcal {S}}\)-wavelets on M are analogous to continuous wavelets on \({\mathbb {R}^n}\) in \({\mathcal {S}}\) (\({\mathbb {R}^n}\)). In particular, we are able to characterize the Hölder continuous functions on M by the size of their continuous \({\mathcal {S}}\)-wavelet transforms, for Hölder exponents strictly between 0 and 1. If M is the torus \({\mathbb T^2}\) or the sphere S 2, and f (s)  =  se ?s (the “Mexican hat” situation), we obtain two explicit approximate formulas for K t , one to be used when t is large, and one to be used when t is small.  相似文献   

12.
In this paper we prove the existence of multi-bump solutions for a class of quasilinear Schrödinger equations of the form \({-\Delta{u} + (\lambda{V} (x) + Z(x))u - \Delta(u^{2})u = \beta{h}(u) + u^{22*-1}}\) in the whole space, where h is a continuous function, \({V, Z : \mathbb{R}^{N} \rightarrow \mathbb{R}}\) are continuous functions. We assume that V(x) is nonnegative and has a potential well \({\Omega : = {\rm int} V^{-1}(0)}\) consisting of k components \({\Omega_{1}, \ldots , \Omega{k}}\) such that the interior of Ω i is not empty and \({\partial\Omega_{i}}\) is smooth. By using a change of variables, the quasilinear equations are reduced to a semilinear one, whose associated functionals are well defined in the usual Sobolev space and satisfy the geometric conditions of the mountain pass theorem for suitable assumptions. We show that for any given non-empty subset. \({\Gamma \subset \{1, \ldots ,k\}}\), a bump solution is trapped in a neighborhood of \({\cup_{{j}\in\Gamma}\Omega_{j}}\) for\({\lambda > 0}\) large enough.  相似文献   

13.
Let ξ ( t)=(ξ 1(t),…,ξ d (t)) be a Gaussian stationary vector process. Let \(g:{\mathbb {R}}^{d}\rightarrow {\mathbb {R}}\) be a homogeneous function. We study probabilities of large extrema of the Gaussian chaos process g(ξ(t)). Important examples include \(g(\mathbf {\boldsymbol {\xi }}(t))={\prod }_{i=1}^{d}\xi _{i}(t)\) and \(g(\mathbf {\boldsymbol {\xi }}(t))={\sum }_{i=1}^{d}a_{i}{\xi _{i}^{2}}(t)\). We review existing results partially obtained in collaboration with E. Hashorva, D. Korshunov, and A. Zhdanov. We also present the principal methods of our investigations which are the Laplace asymptotic method and other asymptotic methods for probabilities of high excursions of Gaussian vector process’ trajectories.  相似文献   

14.
For an odd prime p, let K/k be a Galois p-extension and S be a set of primes of k containing the primes lying over p. For the p r th roots \({\mu _{{p^r}}}\left( K \right)\) of unity in K, we describe the so-called Sha group Sha S (G(K/k), \({\mu _{{p^r}}}\left( K \right)\)) in terms of the Galois groups of certain subfields of K corresponding to S. As an application, we investigate a tower of extension fields \({\left\{ {{k_{{T^i}}}} \right\}_i} \geqslant 0\) where \({k_{{T^{i + 1}}}}\) is defined as the fixed field of a free part of the Galois group of the Bertrandias and Payan extension of \({k_{{T^i}}}\) over \({k_{{T^i}}}\). This is called a tower of torsion parts of the Bertrandias and Payan extensions over k. We find a relation between the degrees \({\left\{ {\left[ {{k_{{T^{i + 1}}}}:{k_{{T^i}}}} \right]} \right\}_{i \geqslant 0}}\) over the towers. Using this formula we investigate whether the towers are stationary or not.  相似文献   

15.
A topological space X is countably paracompact if and only if X satisfies the condition (A): For any decreasing sequence {Fi} of non-empty closed sets with \({\bigcap_{i=1}^{\infty} F_{i} = \emptyset}\) there exists a sequence {Gi} of open sets such that \({\bigcap_{i=1}^{\infty}\overline{G_{i}}=\emptyset}\) and \({F_{i} \subset G_{i}}\) for every i. We will show, by an example, that this is not true in generalized topological spaces. In fact there is a \({\mu}\)-normal generalized topological space satisfying the analogue of A which is not even countably \({\mu}\)-metacompact. Then we study the relationships between countably \({\mu}\)-paracompactness, countably \({\mu}\)-metacompactness and the condition corresponding to condition A in generalized topological spaces.  相似文献   

16.
In this paper we consider the special case where a signal x\({\in }\,\mathbb {C}^{N}\) is known to vanish outside a support interval of length m < N. If the support length m of x or a good bound of it is a-priori known we derive a sublinear deterministic algorithm to compute x from its discrete Fourier transform \(\widehat {\mathbf x}\,{\in }\,\mathbb {C}^{N}\). In case of exact Fourier measurements we require only \({\mathcal O}\)(m\(\log \)m) arithmetical operations. For noisy measurements, we propose a stable \({\mathcal O}\)(m\(\log \)N) algorithm.  相似文献   

17.
We discuss the proof of Kazhdan and Lusztig of the equivalence of the Drinfeld category \({\mathcal D}({\mathfrak g},\hbar)\) of \({\mathfrak g}\)-modules and the category of finite dimensional \(U_q{\mathfrak g}\)-modules, \(q=e^{\pi i\hbar}\), for \(\hbar\in{\mathbb C}\setminus{\mathbb Q}^*\). Aiming at operator algebraists the result is formulated as the existence for each \(\hbar\in i{\mathbb R}\) of a normalized unitary 2-cochain \({\mathcal F}\) on the dual \(\hat G\) of a compact simple Lie group G such that the convolution algebra of G with the coproduct twisted by \({\mathcal F}\) is *-isomorphic to the convolution algebra of the q-deformation G q of G, while the coboundary of \({\mathcal F}^{-1}\) coincides with Drinfeld’s KZ-associator defined via monodromy of the Knizhnik–Zamolodchikov equations.  相似文献   

18.
We investigate the non-homogeneous modular Dirichlet problem Δ p (·)u(x) = f (x) (where Δ p (·)u(x) = div(|?u|p(x-2)?u(x)) from the functional analytic point of view and we prove the stability of the solutions \({\left( {{u_{{p_i}}}} \right)_i}\) of the equation \({\Delta _{{p_i}\left( \cdot \right)}}{u_{{p_i}\left( \cdot \right)}} = f\) as p i (·) → q(·) via Gamma-convergence of sequence of appropriate functionals.  相似文献   

19.
For a family of interpolation norms \({\| \cdot \|_{1,2,s}}\) on \({\mathbb{R}^{n}}\), we provide a distribution over random matrices \({\Phi_s \in \mathbb{R}^{m \times n}}\) parametrized by sparsity level s such that for a fixed set X of K points in \({\mathbb{R}^{n}}\), if \({m \geq C s \log(K)}\) then with high probability, \({\frac{1}{2}\| \varvec{x} \|_{1,2,s} \leq \| \Phi_s (\varvec{x}) \|_1 \leq 2 \| \varvec{x} \|_{1,2,s}}\) for all \({\varvec{x} \in X}\). Several existing results in the literature roughly reduce to special cases of this result at different values of s: For s = n, \({\| \varvec{x} \|_{1,2,n}\equiv \| \varvec{x} \|_{1}}\) and we recover that dimension reducing linear maps can preserve the ?1-norm up to a distortion proportional to the dimension reduction factor, which is known to be the best possible such result. For s = 1, \({\| \varvec{x} \|_{1,2,1}\equiv \| \varvec{x} \|_{2}}\), and we recover an ?2/?1 variant of the Johnson–Lindenstrauss Lemma for Gaussian random matrices. Finally, if \({\varvec{x}}\) is s- sparse, then \({\| \varvec{x} \|_{1,2,s} = \| \varvec{x} \|_1}\) and we recover that s-sparse vectors in \({\ell_1^n}\) embed into \({\ell_1^{\mathcal{O}(s \log(n))}}\) via sparse random matrix constructions.  相似文献   

20.
A linear map \({\phi}\) of operator algebras is said to preserve numerical radius (or to be a numerical radius isometry) if \({w(\phi(A))=w(A)}\) for all A in its domain algebra, where w(A) stands for the numerical radius of A. In this paper, we prove that a surjective linear map \({\phi}\) of the nest algebra \({{\rm Alg}\mathcal N}\) onto itself preserves numerical radius if and only if there exist a unitary U and a complex number ξ of modulus one such that \({\phi(A)= \xi UAU^*}\) for all \({A\in{\rm Alg}\mathcal N}\), or there exist a unitary U, a conjugation J and a complex number ξ of modulus one such that \({\phi(A)=\xi UJA^*JU^*}\) for all \({A\in{\rm Alg}\mathcal N}\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号