首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The goal of this study is to design a novel annular pulse shaping technique for large-diameter Kolsky bars for investigating the dynamic compressive response of concretes. The purpose of implementing an annular pulse shaper design is to alleviate inertia-induced stresses in the pulse shaper material that would otherwise superpose unwanted oscillations on the incident wave. This newly developed pulse shaping technique led to well-controlled testing conditions enabling dynamic stress equilibrium, uniform deformation, and constant strain-rate in the testing of a chosen concrete material. The observed dynamic deformation rate of the concrete is highly consistent (8 % variation) with the stress in the specimen well equilibrated confirming the validity of this new technique. Experimental results at both quasi-static (10?4 s?1) and dynamic (100 s?1, 240 s?1) strain rates showed that the failure strength of this concrete is rate-sensitive.  相似文献   

2.
In this study, the effect of drying temperature on drying behaviour and mass transfer parameters of lemon slices was investigated. The drying experiments were conducted in a laboratory air ventilated oven dryer at temperatures of 50, 60 and 75 °C. It was observed that the drying temperature affected the drying time and drying rate significantly. Drying rate curves revealed that the process at the temperature levels taken place in the falling rate period entirely. The usefulness of eight thin layer models to simulate the drying kinetics was evaluated and the Midilli and Kucuk model showed the best fit to experimental drying curves. The effective moisture diffusivity was determined on the basis of Fick’s second law and obtained to be 1.62 × 10?11, 3.25 × 10?11 and 8.11 × 10?11 m2 s?1 for the temperatures of 50, 60 and 75 °C, respectively. The activation energy and Arrhenius constant were calculated to be 60.08 kJ mol?1 and 0.08511 m2 s?1, respectively. The average value of convective mass transfer coefficient for the drying temperatures of 50, 60 and 75 °C was calculated to be 5.71 × 10?7, 1.62 × 10?6 and 2.53 × 10?6 m s?1, respectively.  相似文献   

3.
The strain-rate-dependent behavior of a toughened matrix composite (IM7/8552) was characterized under quasi-static and dynamic loading conditions. Unidirectional and off-axis composite specimens were tested at strain rates ranging from 10?4 to 103 s?1 using a servo-hydraulic testing machine and split Hopkinson pressure bar apparatus. The nonlinear response and failure were analyzed and evaluated based on classical failure criteria and the Northwestern (NU) failure theory. The predictive NU theory was shown to be in excellent agreement with experimental results and to accurately predict the strain-rate-dependent failure of the composite system based on measured average lamina properties.  相似文献   

4.
Moisture content gradients along the bed column are commonly neglected during simulation of deep-bed grain drying. In this study, rough rice drying kinetics at various thin layers of a deep bed was investigated. The experiments were conducted under different drying conditions and the data were compared with the values predicted by a previously developed non-equilibrium model for numerical simulation of grain drying. The moisture content gradients related to the rough rice column indicated that the higher the drying layer, the more was the moisture content at each drying time. The constant drying rate period was observed neither for any thin layers nor for the entire drying column. The drying rate of the lower layers continuously decreased with drying time, whereas that of the upper layers firstly increased and then decreased. The implemented model predicted drying process with a high accuracy at various layers. However, the values of maximum relative error (RE max ) and mean relative error (MRE) increased as the air temperature increased, and reversely decreased with the air velocity. The higher values of MRE and RE max were related to the layer 1 (0–5 cm bed height) at temperature of 60 °C and air velocity of 0.4 m s?1, and the lower values belonged to the layer 4 (15–20 cm bed height) at temperature of 40 °C and air velocity of 0.9 m s?1.  相似文献   

5.
为了研究应变率对准三维针刺碳纤维增韧的碳化硅复合材料(Cf/SiC)层向压缩力学性能的影响,本文利用分离式Hopkinson压杆装置对三维针刺Cf/SiC复合材料进行了应变率为10-4至6.5×103s-1的单轴压缩力学性能测试。实验结果表明,由于材料缺陷,其动态压缩强度分布遵循Weibull分布。破坏时,材料并未表现出典型的脆性破坏,而是在应力达到压缩强度后经历了较大的伪塑性变形才最终破坏。这表明三维针刺Cf/SiC复合材料沿厚度方向针刺的碳纤维有助于提高材料的韧性。同时,材料的压缩强度随应变率的升高显著增大,并与对数应变率近似成线性关系。借助光学显微镜和扫描电镜对压缩断口的观察表明:材料的失效模式随着应变率变化而发生改变。在准静态下,材料主要表现为剪切和分层破坏,而在高应变率下,则主要表现为劈裂。  相似文献   

6.
The influence of strain rate and moisture content on the behaviour of a quartz sand was assessed using high-pressure quasi-static (10?3 s?1) and high-strain rate (103 s?1) experiments under uniaxial strain. Quasi-static compression to axial stresses of 800 MPa was carried out alongside split Hopkinson pressure bar (SHPB) experiments to 400 MPa, where in each case lateral deformation of the specimen was prevented using a steel test box or ring, and lateral stresses were recorded. A significant increase in constrained modulus was observed between strain rates of 10?3s?1 and 103s?1, however a consistently lower Poisson’s ratio in the dynamic tests minimised changes in bulk modulus. The reduction in Poissons ratio suggests that the stiffening of the sand in the SHPB tests is due to additional inertial confinement rather than an inherent strain-rate dependence. In the quasi-static tests the specimens behaved less stiffly with increasing moisture content, while in the dynamic tests the addition of water had little effect on the overall stiffness, causing the quasi-static and dynamic series to diverge with increasing moisture content.  相似文献   

7.
Dynamic response of a cellular sandwich core material, balsa wood, is investigated over its entire density spectrum ranging from 55 to 380 kg/m3. Specimens were compression loaded along the grain direction at a nominal strain rate of 3 × 103 s−1 using a modified Kolsky (split Hopkinson) bar. The dynamic data are discussed and compared to those of quasi-static experiments reported in a previous study (Mech. Mater. 35 (2003) 523). Results show that while the initial failure stress is very sensitive to the rate of loading, plateau (crushing) stress remains unaffected by the strain rate. As in quasi-static loading, buckling and kink band formation were identified to be two major failure modes in dynamic loading as well. However, the degree of dynamic strength enhancement was observed to be different for these two distinct modes. Kinematics of deformation of the observed failure modes and associated micro-inertial effects are modeled to explain this different behavior. Specific energy dissipation capacity of balsa wood was computed and is found to be comparable with those of fiber-reinforced polymer composites.  相似文献   

8.
We apply a multi-component reactive transport lattice Boltzmann model developed in previous studies for modeling the injection of a CO2-saturated brine into various porous media structures at temperatures T = 25 and 80°C. In the various cases considered the porous medium consists initially of calcite with varying grain size and shape. A chemical system consisting of Na+, Ca2+, Mg2+, H+, CO2°(aq){{\rm CO}_2^{\circ}{\rm (aq)}}, and Cl is considered. Flow and transport by advection and diffusion of aqueous species, combined with homogeneous reactions occurring in the bulk fluid, as well as the dissolution of calcite and precipitation of dolomite are simulated at the pore scale. The effects of the structure of the porous media on reactive transport are investigated. The results are compared with a continuum-scale model and the discrepancies between the pore- and continuum-scale models are discussed. This study sheds some light on the fundamental physics occurring at the pore scale for reactive transport involved in geologic CO2 sequestration.  相似文献   

9.
Tensile tests with simultaneous full-field strain and temperature measurements at the nominal strain rates of 0.01, 0.1, 1, 200 and 3000 s?1 are presented. Three different testing methods with specimens of the same thin and flat gage-section geometry are utilized. The full-field deformation is measured on one side of the specimen, using the DIC technique with low and high speed visible cameras, and the full-field temperature is measured on the opposite side using an IR camera. Austenitic stainless steel is used as the test material. The results show that a similar deformation pattern evolves at all strain rates with an initial uniform deformation up to the strain of 0.25–0.35, followed by necking with localized deformation with a maximum strain of 0.7–0.95. The strain rate in the necking regions can exceed three times the nominal strain rate. The duration of the tests vary from 57 s at the lowest strain rate to 197 μs at the highest strain rate. The results show temperature rise at all strain rates. The temperature rise increases with strain rate as the test duration shortens and there is less time for the heat to dissipate. At a strain rate of 0.01 s?1 the temperature rise is small (up to 48 °C) but noticeable. At a strain rate of 0.1 the temperature rises up to 140 °C and at a strain rate of 1 s?1 up to 260 °C. The temperature increase in the tests at strain rates of 200 s?1 and 3000 s?1 is nearly the same with the maximum temperature reaching 375 °C.  相似文献   

10.
In the present study, a modified split Hopkinson pressure bar (SHPB) is employed to investigate the dynamic response of ice under uniaxial compression in the range of strain rates from 60 to 1400 s?1 and at initial test temperatures of ?10 and ?30 °C. The compressive strength of ice shows positive strain-rate sensitivity over the range of strain rates employed; a slight influence of ice microstructure is observed, but it is much less than that reported previously for ice deformation under quasi-static loading conditions [Schulson, E.M., IIiescu, D., Frott, A., 2005. Characterization of ice for return-to-flight of the space shuttle. Part 1 – Hard ice. NASA CR-2005-213643-Part 1]. Specimen thickness, within the range studied, was found to have little or no effect on the peak (failure) strength of ice, while lowering the test temperature from ?10 to ?30 °C had a considerable effect, with ice behaving stronger at the lower test temperature. Moreover, unlike in the case of uniaxial quasi-static compression of ice, the effect of specimen end-constraint during the high rate compression was found to be negligible. One important result of these experiments, which may have important implications in modeling ice impacts, involves the post “peak-stress” behavior of the ice in that the ice samples do not catastrophically lose their load carrying capacity even after the attainment of peak stress during dynamic compression. This residual (tail) strength of the damaged/fragmented ice is sizable, and in some cases is larger than the quasi-static compression strength reported for ice. Moreover, this residual strength is observed to be dependent on sample thickness and the strain rate, being higher for thinner samples and at higher strain-rates during dynamic compression.  相似文献   

11.
The compressive response of fully dense and 10 vol% porous Ti2AlC MAX phase materials subjected to quasi-static uniaxial and cyclic loading including their repeatable hysteretic behavior is presented. Damage accumulation in the form of kink bands and microcracking is characterized using ultrasonics and scanning electron microscopy under different levels of compressive loading. The observations and measurements are correlated quantitatively using a model based on friction between the crack faces, which is the main dissipation process. The model is shown to capture the hysteretic behavior of Ti2AlC MAX phase and quantitatively reproduce the experimentally measured stress–strain curves.  相似文献   

12.
This paper presents high temperature quasi-static and dynamic tensile testing. Samples are heated by an induction system controlled with a pyrometer. A high-speed camera (500 fps) is used to determine displacement fields with a digital image correlation software. For such tests a specific marking procedure of the sample is applied. This method is used to characterize the mechanical behaviour of a C68 high-carbon steel at temperatures up to 720 °C. Stress-strain curves are given from room temperature up to 720 °C at strain rates ranging from 400 /s to 4 × 102 /s.  相似文献   

13.
For the first time, high quality bulk nanocrystalline (nc) fcc metals, with least amounts of imperfections, exhibiting high strength and ductility at room and different temperatures, under quasi-static and dynamic types of loading, were prepared and a comprehensive study on their post-yield mechanical properties was performed. This investigation included study of the effect of temperature on stress–strain responses of mechanically milled bulk nc Cu and Al. The samples after preparation through mechanical milling and consolidation processes were subjected to uniaxial compressive loading at quasi-static and dynamic strain rates of 10−2 s−1 and 1840–3105 s−1, respectively, at temperatures ranging from 223 to 523 K. In both materials strong dependency of flow stress to temperature was observed; this dependency was rather more pronounced when the materials were tested at the quasi-static strain rate. Further, a new grain size and temperature dependent viscoplastic phenomenological constitutive equation, Khan–Liang–Farrokh (KLF) model was developed based on the Khan–Huang–Liang (KHL) constitutive equation. The model was featured to correlate different characteristic behaviors of polycrystalline materials in the plastic regime, as the result of grain refinement. In addition, the viscoplastic responses of bulk Cu and Al of different grain sizes (from sub-micron to nanometer range), and those from bulk nc Cu and Al at different strain rates (quasi-static to dynamic), recently published (21 and 22), were simulated using the newly developed equation. The results confirmed reasonable capability of the developed model to correlate a wide spectrum of the viscoplastic responses of these fcc metals.  相似文献   

14.
Two different shear sample geometries were employed to investigate the failure behaviour of two automotive alloy rolled sheets; a highly anisotropic magnesium alloy (ZEK100) and a relatively isotropic dual phase steel (DP780) at room temperature. The performance of the butterfly type specimen (Mohr and Henn Exp Mech 47:805–820, 16; Dunand and Mohr Eng Fract Mech 78:2919-2934, 17) was evaluated at quasi-static conditions along with that of the shear geometry of Peirs et al Exp Mech 52:729-741, (27) using in situ digital image correlation (DIC) strain measurement techniques. It was shown that both test geometries resulted in similar strain-paths; however, the fracture strains obtained using the butterfly specimen were lower for both alloys. It is demonstrated that ZEK100 exhibits strong anisotropy in terms of failure strain. In addition, the strain rate sensitivity of fracture for ZEK100 was studied in shear tests with strain rates from quasi-static (0.01 s?1) to elevated strain rates of 10 and 100 s?1, for which a reduction in fracture strain was observed with increasing strain rate.  相似文献   

15.
Structures have been built at micro scales with unique failure mechanisms that are not yet understood, in particular, under high-rate loading conditions. Consequently, microelectromechanical systems (MEMS) devices can suffer from inconsistent performance and insufficient reliability. This research aims to understand the failure mechanisms in micro-scaled specimens deforming at high rates. Single-crystal silicon (SCS) micro specimens that are 4 μm thick are subjected to tensile loading at an average strain rate of 92 s?1 using a miniature Hopkinson tension bar. A capacitance displacement system and piezoelectric load cell are incorporated to directly measure the strain and stress of the silicon micro specimens. The average dynamic elastic modulus of the silicon micro specimens is measured to be 226.8?±?18.50 GPa and the average dynamic tensile strength of the silicon is measured to be 1.26?±?0.310 GPa. High-speed images show that extensive fragmentation of the specimens occurs during tensile failure.  相似文献   

16.
Mass transfer (moisture loss and oil uptake) kinetics during deep fat frying of wheat starch and gluten based snacks was investigated. Both followed a modified first order reaction. Activation energies, z-value, and highest values of D and k for moisture loss and oil uptake were 28.608 kJ/mol, 129.88 °C, 490 and 0.0080 s?1; and 60.398 kJ/mol, 61.79 °C, 1,354.71 and 0.0052 s?1, respectively.  相似文献   

17.
The effects of drying temperatures on the drying kinetics of garlic slices were investigated using a cabinet-type dryer. The experimental drying data were fitted best to the Page and Modified Page models apart from other theoretical models to predict the drying kinetics. The effective moisture diffusivities varied from 4.214 × 10?10 to 2.221 × 10?10 m2 s?1 over the temperature range studied, and activation energy was 30.582 kJ mol?1.  相似文献   

18.
An orthotropic polymeric foam with transverse isotropy (Divinycell H250) used in composite sandwich structures was characterized at various strain rates. Uniaxial experiments were conducted along principal material axes as well as along off-axis directions under tension, compression, and shear to determine engineering constants, such as Young??s and shear moduli. Uniaxial strain experiments were conducted to determine mathematical stiffness constants, i. e., C ij . An optimum specimen aspect ratio for these tests was selected by means of finite element analysis. Quasi-static and intermediate strain rate tests were conducted in a servo-hydraulic testing machine. High strain rate tests were conducted using a split Hopkinson Pressure Bar system built for the purpose using polymeric (polycarbonate) bars. The polycarbonate material has an impedance that is closer to that of foam than metals and results in lower noise to signal ratios and longer loading pulses. It was determined by analysis and verified experimentally that the loading pulses applied, propagated along the polycarbonate rods at nearly constant phase velocity with very low attenuation and dispersion. Material properties of the foam were obtained at three strain rates, quasi-static (10?4 s?1), intermediate (1 s?1), and high (103 s?1) strain rates. A simple model proposed for the Young??s modulus of the foam was in very good agreement with the present and published experimental results.  相似文献   

19.
Reverse ballistic impact tests are widely used for studying dynamic responses because they provide more comprehensive and quantitative projectile/rod response results than forward impact tests. To examine equivalent forward and reverse conditions, a series of 8-cm length oxygen-free copper rods with varying length–diameter ratios was used in forward and reverse ballistic Taylor impact experiments with velocities and strain ratios of 104–215 m/s and 1.25?×?103–2.5?×?103 s-1, respectively. Digital image correlation (DIC) and traditional optical measurements were used to determine instantaneous responses at the μs level. Based on DIC, transient structural deformation, and plastic wave propagation, the forward and reverse length difference at similar velocities ranges from 2 to 6.95 %. Rules governing deformation from the perspective of energy, along with rules for changes in energy and plastic wave propagation were determined. The relative deformation energy error was below 5 % for target projectile mass ratios above 20.  相似文献   

20.
Previous investigations on the effects of strain-rate and temperature histories on the mechanical behavior of steel are briefly reviewed. A study is presented on the influence of strain rate and strain-rate history on the shear behavior of a mild steel, over a wide range of temperature Experiments were performed on thin-walled tubular specimens of short gage length, using a torsional split-Hopkinson-bar apparatus adapted to permit quasi-static as well as dynamic straining at different temperatures. The constant-rate behavior was first measured at nominal strain rates of 10?3 and 103 s?1 for ?150, ?100, ?50, 20, 200 and 400°C. Tests were then carried out, at the same temperatures, in which the strain rate was suddenly increased during deformation from the lower to the higher rate at various large values of plastic strain. The increase in rate occurred in a time of the order of 20 μs so that relatively little change of strain took place during the jump. The low strain-rate results show a well-defined elastic limit but no yield drop, a small yield plateau is found at room temperature. The subsequent strain hardening shows a maximum at 200°C, when serrated flow occurs and the ductility is reduced. The high strain-rate results show a considerable drop of stress at yield. The post-yield flow stress decreases steadily with increasing temperature, throughout the temperature range investigated. At room temperature and below, the strain-hardening rate becomes negative at large strains. The adiabatic temperature rise in the dynamic tests was computed on the assumption that the plastic work is entirely converted to heat. This enabled the isothermal dynamic stress-strain curves to be calculated, and showed that considerable thermal softening took place. The initial response to a strain-rate jump is approximately elastic, and has a magnitude which increases with decrease of testing temperature; it is little affected by the amount of prestrain. At 200 and 400° C, a yield drop occurs after the initial stress increment. The post-jump flow stress is always greater than that for the same strain in a constant-rate dynamic test, the strain-hardening rate becoming negative at large strains or low testing temperature. This observed effect of strain-rate history cannot be explained by the thermal softening accompanying dynamic deformation. These and other results concerning total ductility under various strain-rate and temperature conditions show that strain-rate history strongly affects the mechanical behavior of the mild steel tested and, hence, should be taken into account in the formulation of constitutive equations for that material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号