首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermodynamic quantities and correlation functions (CFs) of the classical antiferromagnet on the checkerboard lattice are studied for the exactly solvable infinite-component spin-vector model, D↦∞. In contrast to conventional two-dimensional magnets with continuous symmetry showing extended short-range order at distances smaller than the correlation length, r ξ c∝ exp(T */T), correlations in the checkerboard-lattice model decay already at the scale of the lattice spacing due to the strong degeneracy of the ground state characterized by a macroscopic number of strongly fluctuating local degrees of freedom. At low temperatures, spin CFs decay as < >∝ 1/r 2 in the range a 0r≪ξ cT -1/2, where a0 is the lattice spacing. Analytical results for the principal thermodynamic quantities in our model are very similar with MC simulations, exact and analytical results for the classical Heisenberg model (D = 3) on the pyrochlore lattice. This shows that the ground state of the infinite-component spin vector model on the checkerboard lattice is a classical spin liquid. Received 16 November 2001 and Received in final form 12 February 2002  相似文献   

2.
Monte Carlo simulations of magnetization and susceptibility in the 3D XY model are performed for system sizes up to L=384 (significantly exceeding the largest size L=160 considered in work published previously), and fields h ≥ 0.0003125 at two different coupling constants β=0.5, and β=0.55 in the ordered phase. We examine the prediction of the standard theory that the longitudinal susceptibility χ has a Goldstone mode singularity such that χ ∝h-1/2 holds when h↦0. Most of our results, however, support another theoretical prediction that the singularity is of a more general form χ ∝hρ-1, where 1/2<ρ<1 is a universal exponent related to the ∼hρ variation of the magnetization.  相似文献   

3.
The finite size behavior of the susceptibility, Binder cumulant and some even moments of the magnetization of a fully finite O(n) cubic system of size L are analyzed and the corresponding scaling functions are derived within a field-theoretic ɛ-expansion scheme under periodic boundary conditions. We suppose a van der Waals type long-range interaction falling apart with the distance r as r - (d + σ), where 2 < σ < 4, which does not change the short-range critical exponents of the system. Despite that the system belongs to the short-range universality class it is shown that above the bulk critical temperature T c the finite-size corrections decay in a power-in-L, and not in an exponential-in-L law, which is normally believed to be a characteristic feature for such systems. Received 8 August 2001  相似文献   

4.
The classical treatment of quasi-spherical vesicle undulations has, in the present work, been reviewed and extended to systems, which are affected by a gravitational field caused by a density difference across the membrane. The effects have been studied by the use of perturbation theory leading to corrections to the mean shape and the fluctuation correlation matrix. These corrections have been included in an analytical expression for the flicker spectrum to probe how the experimentally accessible spectrum changes with gravity. The results are represented in terms of the gravitational parameter, g 0 = ΔρgR 4/κ. The contributions from gravity are in most experimental situations small and thus negligible, but for values of g0 above a certain limit, the perturbational corrections must be included. Expressions for the relative error on the flicker spectrum have been worked out, so that it is possible to define the regime where gravity is negligible. An upper limit of g0 has also been identified, where the error in all modes of the flicker spectrum is significant due to distortion of the mean shape. Received 9 July 2002 and Received in final form 15 November 2002 RID="a" ID="a"e-mail: jonas@kemi.dtu.dk RID="b" ID="b"e-mail: ipsen@memphys.sdu.dk  相似文献   

5.
We start with some methodic remarks referring to purely bosonic quantum systems and then explain how corrections to the leading-order quasiclassical result for the fermion-graded partition function Tr { (−1) F e − β H } can be calculated at small β. We perform such a calculation for certain supersymmetric quantum mechanical systems where such corrections are expected to appear. We consider in particular supersymmetric Yang–Mills theory reduced to (0 + 1) dimensions and were surprised to find that the correction ∝ β2 vanishes in this case. We discuss also a nonstandard N=2 supersymmetric σ-model defined on S 3 and show that the quasiclassical expansion breaks down for this system. Received: 12 December 2001 / Accepted: 29 January 2002?Published online: 11 September 2002  相似文献   

6.
7.
In this paper we develop an approach to soft scattering processes at high energies which is based on two elements: the Good–Walker mechanism for low mass diffraction and multi-pomeron interactions for high mass diffraction. The principal idea, which allows us to specify the theory for pomeron interactions, is that the so called soft processes occur at rather short distances (r 2 1/〈p t 2 α≈0.01 GeV−2), where perturbative QCD is valid. The value of the pomeron slope α is obtained from a fit to the experimental data. Using this theoretical approach, we suggest a model that fits all soft data in the ISR-Tevatron energy range: total, elastic, single and double diffractive cross sections, as well as the t dependence of the differential elastic cross section, and the mass dependence of single diffraction. In this model we calculate the survival probability of diffractive Higgs production, and we obtain a value for this observable that is smaller than 1% at the LHC energy range.  相似文献   

8.
We study the effect of an external field on (1 + 1) and (2 + 1) dimensional elastic manifolds, at zero temperature and with random bond disorder. Due to the glassy energy landscape the configuration of a manifold changes often in abrupt, “first order”-type of large jumps when the field is applied. First the scaling behavior of the energy gap between the global energy minimum and the next lowest minimum of the manifold is considered, by employing exact ground state calculations and an extreme statistics argument. The scaling has a logarithmic prefactor originating from the number of the minima in the landscape, and reads ΔE 1L θ[ln(L z L - ζ)]-1/2, where ζ is the roughness exponent and θ is the energy fluctuation exponent of the manifold, L is the linear size of the manifold, and Lz is the system height. The gap scaling is extended to the case of a finite external field and yields for the susceptibility of the manifolds ∼L 2D + 1 - θ[(1 - ζ)ln(L)]1/2. We also present a mean field argument for the finite size scaling of the first jump field, h 1L d - θ. The implications to wetting in random systems, to finite-temperature behavior and the relation to Kardar-Parisi-Zhang non-equilibrium surface growth are discussed. Received December 2000 and Received in final form April 2001  相似文献   

9.
We consider two-particle dispersion in a velocity field, where the relative two-point velocity scales according to v 2(r) ∝r α and the corresponding correlation time scales as τ(r) ∝r β, and fix α = 2/3, as typical for turbulent flows. We show that two generic types of dispersion behavior arize: For α/2 + β < 1 the correlations in relative velocities decouple and the diffusion approximation holds. In the opposite case, α/2 + β > 1, the relative motion is strongly correlated. The case of Kolmogorov flows corresponds to a marginal, nongeneric situation. In this case, depending on the particular parameters of the flow, the dispersion behavior can be rather diffusive or rather ballistic. Received 13 March 2001  相似文献   

10.
A compartmentalized surface model of Nambu and Goto is studied on triangulated spherical surfaces by using the canonical Monte Carlo simulation technique. One-dimensional bending energy is defined on the skeletons and at the junctions, and the mechanical strength of the surface is supplied by the one-dimensional bending energy defined on the skeletons and junctions. The compartment size is characterized by the total number L of bonds between the two-neighboring junctions and is assumed to have values in the range from L = 2 to L = 8 in the simulations, while that of the previously reported model is characterized by L = 1, where all vertices of the triangulated surface are the junctions. Therefore, the model in this paper is considered to be an extension of the previous model in the sense that the previous model is obtained from the model in this paper in the limit of L↦1. The model in this paper is identical to the Nambu-Goto surface model without curvature energies in the limit of L↦∞ and hence is expected to be ill-defined at sufficiently large L. One remarkable result obtained in this paper is that the model has a well-defined smooth phase even at relatively large L just as the previous model of L↦ 1. It is also remarkable that the fluctuations of surface in the smooth phase are crucially dependent on L; we can see no surface fluctuation when L≤ 2, while relatively large fluctuations are seen when L≥ 3.  相似文献   

11.
We introduce, and numerically study, a system of N symplectically and globally coupled standard maps localized in a d=1 lattice array. The global coupling is modulated through a factor r, being r the distance between maps. Thus, interactions are long-range (nonintegrable) when 0≤α≤1, and short-range (integrable) when α>1. We verify that the largest Lyapunov exponent λM scales as λM ∝ N-κ(α), where κ(α) is positive when interactions are long-range, yielding weak chaos in the thermodynamic limit N↦∞ (hence λM→0). In the short-range case, κ(α) appears to vanish, and the behaviour corresponds to strong chaos. We show that, for certain values of the control parameters of the system, long-lasting metastable states can be present. Their duration tc scales as tc ∝Nβ(α), where β(α) appears to be numerically in agreement with the following behavior: β>0 for 0 ≤α< 1, and zero for α≥1. These results are consistent with features typically found in nonextensive statistical mechanics. Moreover, they exhibit strong similarity between the present discrete-time system, and the α-XY Hamiltonian ferromagnetic model.  相似文献   

12.
We generalize an analogy between rotating and stratified shear flows. This analogy is summarized in Table 1. We use this analogy in the unstable case (centrifugally unstable flow vs. convection) to compute the torque in Taylor-Couette configuration, as a function of the Reynolds number. At low Reynolds numbers, when most of the dissipation comes from the mean flow, we predict that the non-dimensional torque G = T2 L, where L is the cylinder length, scales with Reynolds number R and gap width η, G = 1.46η3/2(1 - η)-7/4 R 3/2. At larger Reynolds number, velocity fluctuations become non-negligible in the dissipation. In these regimes, there is no exact power law dependence the torque versus Reynolds. Instead, we obtain logarithmic corrections to the classical ultra-hard (exponent 2) regimes: G = 0.50 . These predictions are found to be in excellent agreement with avail-able experimental data. Predictions for scaling of velocity fluctuations are also provided. Received 7 June 2001 and Received in final form 7 December 2001  相似文献   

13.
We calculate the damping γq of collective density oscillations (zero sound) in a one-dimensional Fermi gas with dimensionless forward scattering interaction F and quadratic energy dispersion k2 / 2 m at zero temperature. Using standard many-body perturbation theory, we obtain γq from the expansion of the inverse irreducible polarization to first order in the effective screened (RPA) interaction. For wave-vectors | q| /kF ≪F (where kF = m vF is the Fermi wave-vector) we find to leading order γq ∝| q |3 /(vF m2). On the other hand, for F ≪| q| /kF most of the spectral weight is carried by the particle-hole continuum, which is distributed over a frequency interval of the order of q2/m. We also show that zero sound damping leads to a finite maximum proportional to |k - kF | -2 + 2 η of the charge peak in the single-particle spectral function, where η is the anomalous dimension. Our prediction agrees with photoemission data for the blue bronze K0.3MoO3. We comment on other recent calculations of γq.  相似文献   

14.
Dephasing in open quantum chaotic systems has been investigated in the limit of large system sizes to the Fermi wavelength ratio, LF 〉 1. The weak localization correction g wl to the conductance for a quantum dot coupled to (i) an external closed dot and (ii) a dephasing voltage probe is calculated in the semiclassical approximation. In addition to the universal algebraic suppression g wl ∝ (1 + τDϕ)−1 with the dwell time τD through the cavity and the dephasing rate τ ϕ −1 , we find an exponential suppression of weak localization by a factor of ∝ exp[− /τϕ], where is the system-dependent parameter. In the dephasing probe model, coincides with the Ehrenfest time, ∝ ln[LF], for both perfectly and partially transparent dot-lead couplings. In contrast, when dephasing occurs due to the coupling to an external dot, ∝ ln[L/ξ] depends on the correlation length ξ of the coupling potential instead of λF. The text was submitted by the authors in English.  相似文献   

15.
N. P. Rapapa  M. Fabiane 《Pramana》2009,72(6):979-988
We consider corrections to scaling within an approximate theory developed by Mazenko for nonconserved order parameter in the limit of low (d → 1) and high (d → ∞) dimensions. The corrections to scaling considered here follows from the departures of the initial condition from the scaling morphology. Including corrections to scaling, the equal time correlation function has the form: C(r, t) = f 0(r/L)+L ω f 1(r/L)+…, where L is a characteristic length scale (i.e. domain size). The correction-to-scaling exponent ω and the correction-to-scaling functions f 1(x) are calculated for both low and high dimensions. In both dimensions the value of ω is found to be ω = 4 similar to 1D Glauber model and OJK theory (the theory developed by Ohta, Jasnow and Kawasaki).  相似文献   

16.
We provide a simple physical picture of the loss of coherence between two coherently split one-dimensional Bose-Einstein condensates. The source of the dephasing is identified with nonlinear corrections to the elementary excitation energies in either of the two independent condensates. We retrieve the result by Burkov, Lukin and Demler [Phys. Rev. Lett. 98, 200404 (2007)] on the subexponential decay of the coherence ∝exp [-(t/t0)2/3] for the large time t, however, the scaling of t0 differs.  相似文献   

17.
In Rayleigh Bénard experiments, the side wall conductivity is traditionally taken into account by subtracting the empty cell heat conductivity from the measured one. We present a model showing that the correction to apply could be considerably larger. We compare to experiments and find good agreement. One of the consequences is that the Nusselt behavior for Ra < 1010 could be closer to NuRa 1/3 than currently assumed. Also, the wall effect can appear as a continuous change in the γ exponent NuRa γ. Received 26 April and Received in final form 1st October 2001  相似文献   

18.
The directed polymer in a 1+3 dimensional random medium is known to present a disorder-induced phase transition. For a polymer of length L, the high temperature phase is characterized by a diffusive behavior for the end-point displacement R2 ∼L and by free-energy fluctuations of order ΔF(L) ∼O(1). The low-temperature phase is characterized by an anomalous wandering exponent R2/L ∼Lω and by free-energy fluctuations of order ΔF(L) ∼Lω where ω∼0.18. In this paper, we first study the scaling behavior of various properties to localize the critical temperature Tc. Our results concerning R2/L and ΔF(L) point towards 0.76 < Tc ≤T2=0.79, so our conclusion is that Tc is equal or very close to the upper bound T2 derived by Derrida and coworkers (T2 corresponds to the temperature above which the ratio remains finite as L ↦ ∞). We then present histograms for the free-energy, energy and entropy over disorder samples. For T ≫Tc, the free-energy distribution is found to be Gaussian. For T ≪Tc, the free-energy distribution coincides with the ground state energy distribution, in agreement with the zero-temperature fixed point picture. Moreover the entropy fluctuations are of order ΔS ∼L1/2 and follow a Gaussian distribution, in agreement with the droplet predictions, where the free-energy term ΔF ∼Lω is a near cancellation of energy and entropy contributions of order L1/2.  相似文献   

19.
The induced gluon radiation of a high-energy quark in a finite-size QCD medium is studied. For a sufficiently energetic quark produced inside a medium we find the radiative energy loss ΔE qL 2, where L is the distance traveled by quark in the medium. It has a weak dependence on the initial quark energy E q. The L 2 dependence turns to L 1 as the quark energy decreases. Numerical calculations are performed for a cold nuclear matter and a hot quark-gluon plasma. For a quark incident on a nucleus we predict ΔE q ≈0.1E q (L/10fm) β , with β close to unity. Pis’ma Zh. éksp. Teor. Fiz. 65, No. 8, 585–589 (25 April 1997) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

20.
Using a scaling approach we consider a 2D comb copolymer brush under bending deformations. We show that the rectilinear brush is locally stable and can be characterized by a persistence length λ increasing with the molecular weight of grafting side chains as λ ∼ M3. A bending instability due to redistribution of the side chains appears in the non-linear regime where bending is strong. Arguments are presented that the brush conformations consist of alternating rectilinear and bent sections corresponding to the different free-energy minima.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号