首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Analytical letters》2012,45(8):883-893
A multi-wall carbon nanotubes (MWNTs) and cobalt(II) tetrakisphenylporphyrin (Co(II)TPP) modified glassy carbon electrode (MWNTs/Co(II)TPP/GCE) has been prepared. It can be used for individual or simultaneous determination of hydroquinone (HQ) and catechol (CC). The anodic peaks of HQ and CC can be separated well. Owing to the unique properties of MWNTs and special synergistic effect of MWNTs and Co(II)TPP, the modified electrode exhibited a remarkable and stable current response for CC and HQ. The linear ranges for CC and HQ were 1.0–450.0 µmol L?1 and 0.8–400.0 µmol L?1 with detection limits of 0.8 µmol L?1 and 0.5 µmol L?1, respectively. Furthermore, Co(II)TPP, MWNTs, and Co(II)TPP/MWNTs composite were also used to construct modified electrodes and the electrochemical performances were studied.  相似文献   

2.
《Analytical letters》2012,45(8):1610-1621
Abstract

Cobalt hexacyanoferrate (CoHCF) film was formed on multiwalled carbon nanotubes (MWNTs) modified gold electrode by electrodeposition from 0.5 M KCl solution containing CoCl2 and K3Fe(CN)6. The electrochemical behavior and the electrocatalytic property of the modified electrode were investigated. Compared with CoHCF/gold electrode, the CoHCF/MWNTs/gold electrode exhibits greatly improved stability and enhanced electrocatalytic activity toward the oxidation of thiosulfate. A linear range from 5.0×10?5 to 6.5×10?3 M (r=0.9990) for thiosulfate detection at the CoHCF/MWNTs/gold electrode was obtained, with a detection limit of 2.0×10?5 M (S/N=3).  相似文献   

3.
We studied a rapid, sensitive and selective amperometric sensor for determination of hydrogen peroxide by electrodeposited Ag NPs on a modified glassy carbon electrode (GCE). The modified GCE was constructed through a step by step modification of magnetic chitosan functional composite (Fe3O4–CH) and high-dispersed silver nanoparticles on the surface. The resulted Ag@Fe3O4–CH was characterized by various analytical methods including Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, scanning electron microscopy and cyclic voltammetry. The proposed sensor employed Ag@Fe3O4–CH/GCE as the working electrode with a linear current response to the hydrogen peroxide concentration in a wide range from 0.01 to 400 µM with a low limit of detection (LOD = 0.0038 µM, S/N = 3). The proposed sensor showed superior reproductivity, sensitivity and selectivity for the detection of hydrogen peroxide in environmental and clinical samples.  相似文献   

4.
《Analytical letters》2012,45(5):913-926
Abstract

A new nanocomposite was developed by combination of prussian blue (PB) nanoparticles and multiwalled carbon nanotubes (MWNTs) in the matrix of biopolymer chitosan (CHIT). The PB and MWNTs had a synergistic electrocatalytic effect toward the reduction of hydrogen peroxide. The CHIT/MWNTs/PB nanocomposite‐modified glassy carbon (GC) electrode could amplify the reduction current of hydrogen peroxide by ~35 times compared with that of CHIT/MWNTs/GC electrode and reduce the response time from ~60 s for CHIT/PB/GC to 3 s. Besides, the CHIT/MWNTs/PB nanocomposite‐modified GC electrode could reduce hydrogen peroxide at a much lower applied potential and inhibit the responses of interferents such as ascorbic acid (AA) uric acid (UA) and acetaminophen (AC). With glucose oxidase (GOx) as an enzyme model, a new glucose biosensor was fabricated. The biosensor exhibited excellent sensitivity (the detection limit is down to 2.5 µM), fast response time (less than 5 s), wide linear range (from 4 µM to 2 mM), and good selection.  相似文献   

5.
《Analytical letters》2012,45(9):1785-1799
Abstract

Multiwalled carbon nanotubes (MWNTs) were treated with a mixture of concentrated sulfuric and nitric acid to introduce carboxylic acid groups to the nanotubes. Conducting polymer film was prepared by electrochemical polymerization of neutral red (NR). By using a layer‐by‐layer method, homogeneous and stable MWNTs and poly (neutral red) (PNR) multilayer films were alternately assembled on glassy carbon (GC) electrodes. With the introduction of PNR, the MWNTs/PNR multilayer film system showed synergy between the MWNTs and PNR, with a significant improvement of redox activity due to the excellent electron‐transfer ability of carbon nanotubes (CNTs) and PNR. The electropolymerization is advantageous, providing both prolonged long‐term stability and improved catalytic activity of the resulting modified electrodes. The MWNTs/PNR multilayer film modified glassy carbon electrode allows low potential detection of hydrogen peroxide with high sensitivity and fast response time. As compared to MWNTs and PNR‐modified GC electrodes, the magnitude of the amperometric response of the MWNTs/PNR composite‐modified GC electrode is more than three‐fold greater than that of the MWNTs modified GC electrode, and nine‐fold greater than that of the PNR‐modified GC electrode. With the immobilization of glucose oxidase onto the electrode surface using glutaric dialdehyde, a biosensor that responds sensitively to glucose has been constructed. In pH 6.98 phosphate buffer, nearly interference‐free determination of glucose has been realized at ?0.2 V vs. SCE with a linear range from 50 µM to 10 mM and response time <10s. The detection limit was 10 µM glucose (S/N=3).  相似文献   

6.
In this study, a new strategy for the preparation of a modified glassy carbon electrode (GCE) based on a novel nano-sensing layer for the electrocatalytic oxidation of hydrazine was suggested. The suggested nano-sensing layer was prepared with the immobilisation of silver nanoparticles (AgNPs) on ordered mesoporous carbon. The morphology and properties of the prepared nanocomposite on the surface of GCE were characterised by scanning electron microscopy, transmission electron microscopy, N2 adsorption-desorption, X-ray powder diffraction and electrochemical impedance spectroscopy. The electrochemical response characteristics of the modified electrode towards the target analyte were investigated by cyclic voltammetry. Under optimal experimental conditions, the suggested modified GCE showed excellent catalytic activity towards the electro-oxidation of hydrazine (pH = 7.5) with a significant increase in anodic peak currents in comparison with the unmodified GCE. By differential pulse voltammetry and amperometric methods, the suggested sensor demonstrated wide dynamic concentration ranges of 0.08–33.8 µM and 0.01–128 µM with the detection limit (S/N = 3) of 0.027 and 0.003 µM for hydrazine, respectively. The suggested hydrazine sensor was successfully applied for the highly sensitive determination of hydrazine in different real samples with satisfactory results.  相似文献   

7.
《Analytical letters》2012,45(15):2832-2843
Abstract

This work demonstrates the electrochemical behavior of the 1-phenyl-3-methyl-4-(α-furoyl)-pyrazolone-5 (HPMαFP) modified glassy carbon electrode (HPMαFP/GCE) by a dropletting method. Tyrosine (Tyr) was detected at the HPMαFP/GCE by cyclic voltammetry. The mechanism and the best condition of electrode reaction were studied. The results indicate Tyr has an excellent electrochemical response at HPMαFP/GCE; under optimized experimental conditions, the peak current is proportional to the concentration of Tyr over a wide range. The linear regression equation at HPMαFP/GCE is IPa (µA) = 1.01134 + 0.96716 C (µmol · L?1) (r = 0.99914). The low detection limit is 1.6 × 10?7 mol · L?1. The modified electrode exhibited high sensitivity, good selectivity, and reproducibility, and it is easy to prepare.  相似文献   

8.
《Electroanalysis》2005,17(9):749-754
A sensitive electrochemical method for the determination of simvastatin (SV) was established, based on the enhanced oxidation of SV at a multi‐walled carbon nanotubes‐dihexadecyl hydrogen phosphate composite modified glassy carbon electrode (MWNTs‐DHP/GCE). The voltammetric studies showed that MWNTs instead of DHP or GCE could effectively catalyze the oxidation of SV. The dependence of oxidation current on SV concentration was explored under optimal conditions, which exhibited a good linear relationship in the range of 1.0×10?7–7.5×10?6 M. The detection limit of SV was also examined and a low value of 5.0×10?8 M was obtained for 5 min accumulation (σ=3). This electrode was applied to the detection of SV in drug forms and the results were in accordance with those obtained by UV spectroscopy.  相似文献   

9.
A new approach is described for the photoelectrocatalytic oxidation of Reduced ß-Nicotinamide Adenine Dinucleotide (NADH). It is based on a glassy carbon electrode (GCE) modified with a film of poly-Neutral Red (poly-NR) that is obtained by electropolymerization. Electrochemical measurements revealed that the modified electrode displays electrocatalytic and photo-electrocatalytic activity towards oxidation of NADH. If irradiated with a 250-W halogen lamp, the electrode yields a strongly increased electrocatalytic current compared to the current without irradiation. Amperometric and photo-amperometric detection of NADH was performed at +150 mV vs. Ag/AgCl/KClsat and the currents obtained are linearly related to the concentration of NADH. Linear calibration plots are obtained in the concentration range from 1.0 μM to 1.0 mM for both methods. However, the slope of the current-NADH concentration curve of the photo-electrocatalytic procedure was 2-times better than that obtained without irradiation.
Figure
A poly-Neutral Red modified glassy carbon electrode (poly-NR/GCE) was prepared by electropolymerization process. This modified electrode displays electrocatalytic and also photoelectrocatalytic activity towards oxidation of NADH. Compared with electrocatalytic oxidation of NADH, the current response was increased about 2.0 times in the photoelectrocatalytic oxidation process.  相似文献   

10.
A modified electrode was prepared using electrodeposition methods to immobilize caffeic acid (CAF) onto the surface of a glassy carbon electrode (GCE) to create a polymer suitable for biosensor development. The polymer film coverage of the surface bound species was further optimized using electrodeposition methods, thus increasing the surface coverage to ca. 10?9 mol cm?2. Using cyclic voltammetry, the modified carbon electrode was used to facilitate and observe the electrocatalytic oxidation of coenzymes such as NADH, cysteine, and glutathione at different concentrations. A calibration curve was determined in each case within the concentration range; 300 nM to 10 mM, with the limits of detection (LOD) of 246 µM, 99 µM, 2.2 µM for NADH, cysteine, and glutathione respectively.  相似文献   

11.
A novel electrochemical sensor based on nickel-doped cobalt ferrite nanoparticles (Ni0.1Co0.9Fe2O4)-modified glassy carbon electrode (NCF/GCE) was presented for the sensitive detection of paracetamol. Experimental conditions such as pH, applied potentials and concentration were investigated using cyclic voltammetric and chronoamperometric techniques. The modified electrode exhibited excellent catalytic response towards the oxidation of paracetamol with good reproducibility. The overpotential for oxidation of paracetamol is decreased, and the current response enhanced significantly on the modified electrode in comparison with that of bare electrode. Linear calibration curve is obtained over the range 2 μM to 8,000 μM having a detection limit of 11 nM. The modified electrode facilitated the simultaneous detection of paracetamol, ascorbic acid, and dopamine with good reproducibility.  相似文献   

12.
《Analytical letters》2012,45(6):923-935
Electrochemically reduced graphene oxide (ER-GO) was prepared by reducing exfoliated graphene oxide sheets on a glassy carbon electrode (GCE). The voltammetric responses of Sudan I-IV were studied at the ER-GO modified GCE (ER-GO/GCE). Compared with chemically reduced graphene oxide (CR-GO) modified electrode (CR-GO/GCE), ER-GO/GCE showed higher voltammetric responses to Sudan I. The electrode had a linear response to Sudan I in the range of 0.04–8.0 µmol L?1 and a detection limit of 0.01 µmol L?1. The real sample determination indicated that the proposed method was reliable, effective, and sufficient.  相似文献   

13.
Electrocatalytic oxidation of sulfide ion on a glassy carbon electrode (GCE) modified with multiwall carbon nanotubes (MWCNTs) and a copper (II) complex was investigated. The Cu(II) complex was used due to the reversibility of the Cu(II)/Cu(III) redox couple. The MWCNTs are evaluated as a transducer, stabilizer and immobilization matrix for the construction of amperometric sensor based on Cu(II) complex adsorbed on MWCNTs immobilized on the surface of GCE. The modified GCE was applied to the selective amperometric detection of sulfide at a potential of 0.47 V (vs. Ag/AgCl) at pH 8.0. The calibration graph was linear in the concentration range of 5 µM–400 µM; while the limit of detection was 1.2 µM, the sensitivity was 34 nA µM?1. The interference effects of SO3 2?, SO4 2?, S2O3 2?, S4O6 2?, Cysteine, and Cystein were negligible at the concentration ratios more than 40 times. The modified electrode is more stable with time and more easily restorable than unmodified electrode surface. Also, modified electrode permits detection of sulfide ion by its oxidation at lower anodic potentials.   相似文献   

14.
《Analytical letters》2012,45(3):459-470
Abstract

A highly sensitive electrochemical biosensor for the detection of trace amount of 1‐naphthol was designed. Acid‐denatured DNA were immobilized onto the pretreated glassy carbon electrode (GCE(ox)) surface. Two well‐defined oxidation peaks were observed on the denatured DNA‐modified GCE(ox) at about +0.80 V and +1.10 V (vs. Ag/AgCl) in 0.10‐M acetate buffer (pH 5.0). The peak current of the guanine residue decreased with increasing concentration of 1‐naphthol. The optimum experimental conditions for the detection of 1‐naphthol were explored, and the calibration was linear for 1‐naphthol in the range of 1.0×10?8?1.1×10?6 M, with a correlation coefficient of 0.998. The limit of detection (LOD) was 5.0×10?9 M (S/N=3).  相似文献   

15.
《Analytical letters》2012,45(5):875-886
Abstract

Platinum nanowires (PtNW) were prepared by an electrodeposition strategy using nanopore alumina template. The nanowires prepared were dispersed in chitosan (CHIT) solution and stably immobilized onto the surface of glassy carbon electrode (GCE). The electrochemical behavior of PtNW‐modified electrode and its application to the electrocatalytic reduction of hydrogen peroxide (H2O2) are investigated. The modified electrode allows low potential detection of hydrogen peroxide with high sensitivity and fast response time. As an application example, the glucose oxidase was immobilized onto the surface of PtNW‐modified electrode through cross‐linking by glutaric dialdehyde. The detection of glucose was performed in phosphate buffer at –0.2 V. The resulting glucose biosensor exhibited a short response time (<8 s), with a linear range of 10?5?10?2 M and detection limit of 5×10?6 M.  相似文献   

16.
A strategy to fabricate a hydrogen peroxide (HP) sensor is developed by electrodepositing silver nanoparticles (Ag NPs) on a modified glassy carbon electrode (GCE) with a zinc oxide (ZnO) film. The Ag NPs/ZnO/GCE has been characterized by scanning electron microscopy, cyclic voltammetry, and chronoamperometry. It has been found that the Ag NPs synthesized in the presence of ZnO film provide an electrode with enhanced sensitivity and excellent stability. The sensitivity to HP is enhanced 3-fold by using Ag NPs/ZnO/GCE compared to Ag NPs/GCE. The HP sensor exhibits good linear behavior in the concentration range 2 µM to 5.5 mM for the quantitative analysis of HP with a detection limit of 0.42 µM (S/N?=?3).  相似文献   

17.
《Analytical letters》2012,45(14):2653-2663
Abstract

A multi‐walled carbon nanotubes modified glassy carbon electrode (MWNTs/GCE) was fabricated, and the electrochemical behaviors of acetaminophen (ACOP) were investigated on the MWNTs/GCE. The results showed that MWNTs exhibited excellent electrocatalytic effects on the reaction of ACOP by accelerating the electron transfer rate. Cyclic voltammetry (CV) was used to explore the electrochemical redox mechanism of ACOP on the MWNTs/GCE and differential pulse voltammetry (DPV) was taken to determine ACOP in samples, respectively. The results showed that the oxidative peak currents were linear with the concentration of ACOP in the range of 4.0×10?7–1.5×10?4 mol l?1 with the detection limit 1.2×10?7 mol l?1. The MWNTs/GCE showed satisfactory stability, selectivity, and it can be used to quantify ACOP in effervescent dosage real samples.  相似文献   

18.
The electrochemical oxidation of morphine (MO) and codeine (COD) has been investigated by the application of a novel glassy carbon electrode modified with a hydroxyapatite-Fe3O4 nanoparticles/multiwalled carbon nanotubes composite (HA-FeNPs-MWCNTs/GCE). The modified electrode worked as an efficient sensor for simultaneous determination of MO and COD in the presence of uric acid. Response surface methodology was utilized to optimize the voltammetric response of the modified electrode for the determination of MO and COD. The amount of HA-FeNPs in the modifier matrix (%HA-FeNPs), the solution pH and the accumulation time were chosen as the three important operating factors through the experimental design methodology. The central composite design as a response surface approach was applied for obtaining the optimum conditions leading to maximum oxidation peak currents for MO and COD. The differential pulse voltammetry results showed that the obtained anodic peak currents were linearly proportional to concentration in the range of 0.08–32 µM with a detection limit (S/N = 3.0) of 14 nM for MO and in the range of 0.1–28 µM and with a detection limit of 22 nM for COD. The proposed method was successfully applied to determine these compounds in human urine and blood serum samples.  相似文献   

19.
《Analytical letters》2012,45(13):2077-2088
Abstract

An electrochemiluminescence (ECL) method for reduced nicotinamide adenine dinucleotide (NADH) was proposed by immobilizing tris(2,2′‐bipyridyl) ruthenium(II) (Ru(bpy)3 2+) in multiwall carbon nanotubes (MWCNTs)/Nafion composite membrane that was formed on glassy carbon electrode surface. The electrochemical and ECL behaviors of the immobilized Ru(bpy)3 2+ were investigated. The cyclic votammogram of the modified electrode in pH 7.0 phosphate buffer solution showed a couple of redox peaks at +1190 and +1060 mV at 100 mV/s. The composite film had a more open structure and a large surface area allowing faster diffusion of Ru(bpy)3 2+. The presence of MWCNTs resulted in the improved ECL sensitivity and longer‐term stability of the modified electrode. The modified electrode showed a linear response to NADH in the concentration range of 1.0×10?6 to 1.6×10?5 M with a detection limit of 8.2×10?7 M.  相似文献   

20.
《Analytical letters》2012,45(18):3392-3404
Abstract

Clomipramine, an important tricylic antidepressant drug with low redox activity, was effectively electrocatalyzed on poly‐aminobenzene sulfonic acid/Pt nano‐clusters modified glassy carbon electrode (i.e., poly‐ABSA/Pt/GCE) and generated a sensitive anodic peak at about 0.80 V in pH 8.1 PBS. ABSA was electropolymerized on the surface of GCE modified with Pt nano‐clusters. Pt nanoparticles provide a 3 D and conductive structure for the polymer immobilization. The resulting sensor exhibited a considerable enhancement in voltammetric response characteristics: extending the linear range and lowering the detection limit. The anodic peak current of clomipramine was linear with its concentration over two concentration intervals, viz., 1.0×10?7~4.0×10?6 M and 4.0×10?6~4.0×10?5 M, with the detection limit of 1.0×10?9 M (S/N=3). This method was successfully applied to the determination of clomipramine in drug tablets and proved to be reliable compared with UV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号