首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The simple and highly sensitive determination of palladium is based on the reaction between Pd(II)/5-Br-PADAP and Zn(II) DBDTC complexes in 1,2-dichloroethane or toluene at pH 9.7. At 530 nm, the molar absorptivity is about 0.8 × 105 l mol ?1 cm ?1. Beer's law is obeyed in the concentration range 0.1–1.2 μg ml ?1 Pd. Relative standard deviations are 2–5%. Metal ions reacting with either of the organic reagents interfere.  相似文献   

2.
ABSTRACT

A new sorbent and chemosensor for highly selective and sensitive on-site preconcentration and colorimetric determination of Pd(II) was developed based on its reaction with 3-methyl-2,6-dimercapto-1,4-thiopyrone (MDT) immobilised onto polyurethane foam (PUF). Complexation of Pd(II) with MDT sorbed on PUF tablets leads to a contrast change in the sorbent colour from pale yellow to reddish-brown. The developed chemosensor is highly selective with respect to the transition and platinum group metals. It has a maximum sorption capacity of 17 µmol g?1 for Pd(II). Reaction is possible in a strongly acidic medium (up to10 M HCl), and the properties of the chemosensor do not change during storage for a long time. The colorimetric response of the chemosensor was measured using red–green–blue (RGB) colour model. The dependence of the luminosity of the G channel on the Pd(II) concentration was linear in the concentration range from 0.3 to 64 µg L?1 with a detection limit of 0.1 µg L?1 (R2 = 0.997). The colour scale for visual detection of Pd(II) was constructed in the concentration range of 0.02–0.64 mg L?1 for the sorption from 20 mL of an aqueous sample. The accuracy of the developed methods was assessed by the analysis of a certified reference material (platinum–palladium alloy) and by comparison with the results of gravimetric or graphite furnace atomic absorption spectrometry (GFAAS) determination of Pd. The developed method was successfully applied to determine Pd in samples of mine water and road dust, in the electrolyte bath and in the sewage sludge of a palladium electroplating bath.  相似文献   

3.
The reduction of PdII precatalysts to catalytically active Pd0 species is a key step in many palladium‐mediated cross‐coupling reactions. Besides phosphines, the stoichiometrically used organometallic reagents can afford this reduction, but do so in a poorly understood way. To elucidate the mechanism of this reaction, we have treated solutions of Pd(OAc)2 and a phosphine ligand L in tetrahydrofuran with RMgCl (R=Ph, Bn, Bu) as well as other organometallic reagents. Analysis of these model systems by electrospray‐ ionization mass spectrometry found palladate(II) complexes [LnPdR3]? (n=0 and 1), thus pointing to the occurrence of transmetallation reactions. Upon gas‐phase fragmentation, the [LnPdR3]? anions preferentially underwent a reductive elimination to yield Pd0 species. The sequence of the transmetallation and reductive elimination, thus, constitutes a feasible mechanism for the reduction of the Pd(OAc)2 precatalyst. Other species of interest observed include the PdIV complex [PdBn5]?, which did not fragment via a reductive elimination but lost BnH instead.  相似文献   

4.
《Analytical letters》2012,45(3):503-511
ABSTRACT

A specific method for the spectrophotometric determination of palladium with N.N'-diphenylbenzimidoylthiourea (DPB1TU) is described. The method in new, simple, rapid and applicable over 0.3-1.0 M HC1 and free from interferences of the precious metals i.e.

Ag, Au, Pt, Ir, Rh, Ru, Os. The value of molar absorptivity of the complex in the term of Pd is (2.50)x104 L mole?1 cm?1at λmax 365 nm in chloroform. The detection limit of the method at 3 σ a is 80 ppb Pd. The composition of the complex and effect of diverse ions in the determination of Pd are discussed. The application of the method has been tested for the analysis of the metal in catalytic material.  相似文献   

5.
A sensor based on graphite electrode modified with palladium‐platinum‐palladium film is proposed for phosphite determination by flow‐injection amperometry. The modified electrode was prepared by a sequential cathodic deposition of Pd, Pt and Pd on a graphite electrode from 0.5% m/v PdCl2+28% m/v NH4OH and 2% m/v H2PtCl6+10% v/v H2SO4 solutions. After suitable conditioning, the electrode showed catalytic activity for phosphite oxidation when 0.15 V was applied. The proposed system handles approximately 50 samples per hour (0.01–0.05 mol L?1 Na2HPO3; R2=0.9997), consuming ca. 70 μL of sample per determination. The limit of detection and amperometric sensibility were 5×10?4 mol L?1 and 1.5 mA L mol?1, respectively. The proposed method was applied to analysis of fertilizer samples without pre‐treatment. Results are in agreement with those obtained by spectrophotometry and titrimetry at 95% confidence level and good recoveries (96–109%) of spiked samples were found. Relative standard deviation (n= 12) of a 0.01 mol L?1 Na2HPO3 sample was 2%. The useful lifetime of modified electrode was around 220 determinations. For routine purposes it means that this electrode can be continuously used for 5 hours.  相似文献   

6.
A sensitive and selective microwave-assisted solid phase extraction procedure coupled to inductively coupled plasma-mass spectrometry (ICP-MS) is proposed for palladium (Pd) and platinum (Pt) quantification in environmental and biological samples. Pd and Pt were quantitatively retained on commercial thioureido propyl functionalised silica gel packed inside a home-made glass microcolumn, and later eluted with 0.5% thiourea solution under microwave irradiation, followed by ICP-MS determination. The main variables affecting the procedural stages (i.e., sorption and desorption) and ICP-MS determination were optimised. The best conditions found were: (a) sorption: sample acidity, 1?M HCl; sample flow rate, 3?mL?min?1; (b) desorption: microwave radiation, power 800?W; eluent concentration, 0.5% thiourea; eluent flow rate, 0.5?mL?min?1; (c) ICP-MS determination: nebuliser feeding, free aspiration (0.3?mL?min?1); internal standard, Rh (5?µg?L?1). Analyte recoveries were higher than 90% and concentration factors up to 90 and 92 were achieved for Pd and Pt, respectively. Depending on the conditions, the methodological limits of detection were down to 0.2?ng?L?1 for both analytes and repeatability, expressed as RSD%, varied between 1.3 and 11.0%. A method selectivity evaluation showed that most of the ICP-MS interferents were either quantitatively separated or more than 86% eliminated, except for Cu (elimination efficiency around 30%). Finally, the method was successfully used to determine Pd in certified reference materials (i.e. human urine and serum) and Pd and Pt in PM10 airborne particulate matter fractions.  相似文献   

7.
A simple, cheap, and nonpolluting method was developed for the cloud point extraction of gold (Au) and palladium (Pd). It is based on the complexation reaction of Au and Pd with 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (PMBP) and micelle mediated extraction of the complex using the non-ionic surfactant poly(ethylene glycol) mono-p-nonylphenyl ether (PONPE 7.5). Under the optimized experimental conditions, the enrichment factors are 16 and 17 for Au and Pd, respectively, for 15?mL of preconcentrated solution. The limits of detection are 3.8???g?L?1 and 1.8???g?L?1 for Au and Pd, respectively. The relative standard deviations are 1.4% for Au and 0.6% for Pd (n?=?11). The method was successfully applied to the determination of Au and Pd in certified reference materials and mine samples.
Figure
CPE of gold(III) and palladium(II)  相似文献   

8.

We report on the use of mesoporous silica microparticles (μPs) functionalized with quarternary amino groups for the isolation of platinum and palladium tetrachloro complexes from aqueous road dust digests. The μPs have a size ranging from 450 to 850 nm and are suspended directly in the aqueous digests, upon which the anionic Pt and Pd complexes are retained on the cationic surface. Subsequently, the μPs are separated by centrifugation. Elements that cause spectral interferences in ICP-MS determination of Pt and Pd can be quantitatively removed by adding fresh 0.240 mol L−1 HCl to the μPs and by repeating the centrifugation step. The analyte-loaded μPs are then dissolved in 0.1 mL of 2 mol L−1 HF, diluted to 2 mL, and the solutions thus obtained are analyzed by quadrupole ICP-MS. This method avoids analyte elution from the sorbent. This “dispersed particle extraction” approach yielded a run-to-run relative standard deviation ≤ 5 % for Pt and ≤ 4 % for Pd (at 0.1 ng mL−1, n = 4 road dust digests). Method detection limits (expressed as concentrations in the dust samples) are 2 and 1 ng g−1 for Pt and Pd, respectively. The method was validated by analysis of a reference material (BCR CRM 723) and applied to the analysis of road dust samples collected in downtown Vienna. Pt and Pd concentrations in samples collected in summer and in winter were compared, with concentrations ranging from 205 to 1445 ng g−1 for Pt and from 201 to 1230 ng g−1 for Pd.

Mesoporous silica microparticles (μPs) functionalized with quarternary amino groups were used for isolating platinum and palladium from aqueous road dust digests. The μPs were suspended directly in the aqueous digests, and the analyte-loaded μPs were analyzed using “dispersed particle extraction”.

  相似文献   

9.
A method for preconcentration of palladium at trace level on modified multiwalled carbon nanotubes columns and determination by flame atomic absorption spectrometry (FAAS) has been developed. Multiwalled carbon nanotubes (MWCNTs) were oxidized with concentrated HNO3 and the oxidized multiwalled carbon nanotubes were modified with 5-(4′-dimethylamino benzyliden)-rhodanine, and then were used as a solid sorbent for preconcentration of Pd(II) ions. Factors influencing sorption and desorption of Pd(II) ions were investigated. The sorption of Pd(II) ions was quantitative in the pH range of 1.0–4.5, whereas quantitative desorption occurs with 3.0 mL 0.4 mol L?1 thiourea. The amount of eluted palladium was measured using flame atomic absorption spectrometry. The effects of experimental parameters, including sample flow rate, eluent flow rate, and eluent concentration were investigated. The effect of coexisting ions showed no interference from most ions tested. The proposed method permitted a large enrichment factor (about 200). The relative standard deviation of the method was ±2.73% (for eight replicate determination of 2.0 μg mL?1 of Pd(II)) and the limit of detection was 0.3 ng mL?1. The method was applied to the determination of Pd(II) in water, road dust, and standard samples.  相似文献   

10.
Copper(I) and palladium(II) complexes containing 5-acetyl-6-methyl-1,2,3,4-tetrahydropyrimidine-2-thione (L1), ethyl 4,6-dimethyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (L2), cis-5-acetyl-6-ethyl-5,6-dihydro-2-thiouracil (L3), and 5,6-dihydro-2-thiouracil (L4) have been synthesized. All complexes were characterized by elemental analysis, IR, 1H, and 13C NMR spectroscopy. To assign bands in the IR spectra of L1 and L2 and complexes with Cu(I) and Pd(II), deuterium substitution of movable protons at N-atoms was used. The crystal structures of two compounds, [Cu(L2)2Cl] and [Pd(L4)2Cl2], were determined by X-ray single-crystal and powder diffraction, respectively. In [Cu(L2)2Cl], copper has a rare coordination number of three and triangular surrounding of two neutral L2 molecules, coordinated through sulfurs, and chloride. In [Pd(L4)2Cl2], palladium has a standard square-planar geometry, formed by two uracil molecules and two chlorides. A new method for the synthesis of 5,6-dihydro-2-thiouracil, starting from β-aminopropionic acid, was suggested.  相似文献   

11.
《Analytical letters》2012,45(14):2489-2497
Abstract

A sensitive and selective method for the determination of palladium(II) in mineral veins of quartz, a pegmatite rock from Campo Largo County, Parana State, Brazil, was investigated. After liquid-liquid extraction of Pd2- from aqueous solution, pH 2.4, with [5-(4-dimethylaminebenzylidene)rhodanine] and methyl isobutyl ketone, the back-extraction was performed with 3.0 mol.L?1 sulfuric acid. At pH 2.4, only trace amounts of gold(III) and silver(I) were co-extracted with palladium(II). However, neither Au3+ nor Ag+ interfere with palladium(II) determination by differential pulse polarography using tris(hydroxymethyl)aminomethane and potassium nitrate, pH 11.0, as supporting electrolyte. The observed detection limit was 1.0 μg(Pd2+).L?1.  相似文献   

12.
A method was developed for the on-line determination of palladium in complex matrices with flame atomic absorption spectrometry (FAAS) using Amberlite XAD-16 resin functionalized with 2-[2-(5-thiol-1,3,4-thiadiazolyl)]-azonaphthol (TTAN) reagent. Optimum experimental conditions such as pH of sample, type of eluent, amount of resin, volumes of sample and eluent solution, flow rates of sample and eluent, and effect of interfering ions were established. A 0.1?mol?L?1 thiourea solution in 0.5?mol?L?1 HCl was used as the eluent and subsequently transportation the analyte ions into the nebulizer–burner system for atomization. The synthesized chelating resin material showed excellent chemical and mechanical resistance, fast adsorption kinetics permitting the use of high sample flow rates without significant losses of retention efficiency. The detection limit of the method was 1.5?µg?L?1 while the relative standard deviation (RSD%) was 2.4% at 0.1?mg?L?1 Pd(II) level. The developed method was successfully applied to the determination of palladium in the catalytic converter and water samples.  相似文献   

13.
The last decade has witnessed the rapid development of high-valent Pd-involved organic transformations. This has also led to a steadily growing number of publications concerning the preparation of isolable and characterizable palladium(III) and palladium(IV) complexes. A variety of one-electron and two-electron oxidants have been employed to give access to high-oxidation-state Pd compounds. Undoubtedly, the study of these stoichiometric reactions has great implications for relevant Pd-mediated catalysis. In this minireview, the focus is on the synthetic approaches to structurally determined PdIII/IV complexes starting from their PdII precursors, and the advances in this research area from early 2010 to late 2019 will be highlighted. Chemical oxidations exploiting various oxidizing agents including 1) hypervalent iodine reagents; 2) halogens; 3) electrophilic fluorination reagents; 4) alkyl/aryl halides; 5) ferrocenium salts; 6) peroxides/O2; 7) sulfonyl chlorides; and 8) others are covered. A “greener” electrooxidation manner has also been reviewed.  相似文献   

14.
We report on the use of a water-insoluble pillar[5]arene derivative carrying ten carboxy groups as an adsorbent, packed in a glass microcolumn, for the separation and preconcentration of trace gold (Au) and palladium (Pd). Sample pH, sample loading time, sample flow rate, eluent concentration, and eluent flow rate were optimized. Effects of potentially interfering metal ions that are commonly encountered in soil were also investigated. Under the optimized conditions, the enrichment factors for Au and Pd are 12 and 16, respectively. Flow injection in combination with flame atomic absorption spectrometry was then applied for the quantitation of the elements. The analytical range is linear in the range between 0.05 and 1 μg mL?1 for both Au and Pd. The limits of detection are 15.9 μg L?1 for Au and 16.0 μg L?1 for Pd, with relative standard deviations (for n?=?11) of 0.7 % (Au) and 0.4 % (Pd), respectively. The accuracy of the method was validated using certified reference materials (coal and ash) and geological samples. Figure
A pillar[5]arene derivative carrying ten carboxy groups was used for the adsorption of Au(III) and Pd(II) ions which then were determined by flow-injection FAAS. After optimization, the method was successfully applied to the determination of these ions in certified reference materials and geological samples  相似文献   

15.
In the present work, a simple procedure is presented for the extraction and determination of pre-concentrated trace amounts of palladium ions through solid phase extraction (SPE) and flame atomic absorption spectrophotometry. This process was performed using Nylon-66/5-(4-dimethylaminobenzylidene) rhodanine composite nanofibres. These nanofibres were produced under optimised conditions via two-axial electrospinning technique and characterised by scanning electron microscopy and Fourier-transform infrared spectroscopy. The effect of experimental parameters including solution pH, the type and volume of eluent and contact time was investigated in extraction and desorption process. Under the optimised conditions, good linearity in the range of 0.07–8 μg L?1 and low detection limit of 0.015 μg L?1 were obtained. High enrichment factor of 187.5 and good relative standard deviation of ±2.2% at 5 μg L?1 of palladium had been achieved. The sorbent capacity for palladium adsorption was obtained 27 mg palladium per gram of nanofibres. So, the SPE was successfully applied to pre-concentrate and determine Pd(II) ions with flame atomic absorption spectrophotometer in real samples.  相似文献   

16.
《Analytical letters》2012,45(7):1013-1027
Abstract

Nine new hydroxamic acids in conjunction with four pyridylazo reagents were explored for extractive separation and spectrophotometric determination of palladium in environmental samples. It was found that maximum sensitivity and selectivity was achieved by employing N-p-methoxyphenyl-2-furylacrylohydroxamic acid (MFHA) and 5-(diethylamino)-2-(2-pyridylazo) phenol (DEPAP). Palladium was first selectively extracted with MFHA in isoamyl alcohol at pH 2.7-3.5 and the extract was equilibrated with a mixture of 5 M HCl and 10? 3 M solution of DEPAP in ethanol. The resulting intensely green ternary complex was measured at 560 nm (σ 5.1 × 104 l mole?1 cm?1). The extraction system is suitable for enrichment of palladium over 15 times without loss in recovery and enables determination of palladium at levels as low as 10?4 ppm (0.1 ppb). The method tolerates the presence of a large number of diverse ions normally associated with palladium, including platinum metals, and was employed for the determination of palladium in standard catalysts, biological materials, and freshwaters.  相似文献   

17.
《Analytical letters》2012,45(9):1737-1748
Abstract

Isonitroso-4-methyl-2-pentanone (HIMP) is proposed as a new reagent for extraction and photometric determination of Pd(II). The reagent forms a yellow complex with palladium in the pH range 4.0-5.0. The complex extracted into chloroform was measured at 330 nm. The molar absorptivity was found to be 5.37 × 103 1 mol?1 cm?1 and Sandell's sensitivity 20 ng cm?2 Beer's law was obeyed over the concentration range 0.1-10.0 μg/ml of palladium. The method is applicable for palladium estimation in Ores and catalysts.  相似文献   

18.
The reactions of 3,10‐C‐meso‐3,5,7,7,10,12,14,14‐octamethyl‐1,4,8,11‐tetraazacyclotetradecadiene, L1, and two isomers (LB and LC, differing in the orientation of methyl groups on the chiral carbon atoms) of its reduced form with PdCl2 and K2[Pd(SCN)4], produce square‐planar tetrachloro‐ and tetrathiocyano‐palladium(II) complexes of general formulae [PdL′][PdCl4] and [PdL′][Pd(SCN)4] (L′ = L1, LB and LC), respectively. By contrast, the third ane isomer, LA, upon reaction with the same reagents, PdCl2 and K2[Pd(SCN)4], formed octahedral tetrachloro‐ and tetrathiocyanato‐palladium(IV) complexes [PdLACl2]Cl2 and [PdLA(SCN)2](SCN)2, respectively. The [PdL′][PdCl4] and [PdLACl2]Cl2 complexes undergo substitution reactions with KSCN to form square‐planar and octahedral tetrathiocyanato complexes [PdL′][Pd(SCN)4] and [PdLA(SCN)2](SCN)2, respectively. All complexes have been characterized on the basis of analytical, spectroscopic, conductometric and magnetochemical data. The anti‐fungal and anti‐bacterial activities of these complexes have been studied against some phytopathogenic fungi and bacteria. The crystal structure of [PdL1][Pd(SCN)4] has been confirmed by X‐ray crystallography and shows with square‐planar PdN4 and PdS4 geometries [monoclinic, space group C2/c, a = 17.884(3) Å, b = 14.734(2) Å, c = 11.4313(18) Å, β = 104.054(5)° ]. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
In this work a simple, fast and fully automated analytical methodology for the spectrophotometric determination of phenylglyoxylic acid is proposed. Phenylglyoxylic acid is a metabolite of styrene that is excreted in urine, being used as an indicator of styrene occupational exposure. The developed procedure was based on the phenylglyoxylic acid ability to inhibit the formation of the peroxovanadium cation produced by the reaction between vanadate and H2O2. The analytical process was implemented in a multi-pumping flow system that employs multiple solenoid actuated micro-pumps as the only active components. This enabled the reproducible insertion and efficient mixing of low volumes of sample and reagents as well as the transportation of the sample zone towards detection. Thus an easily controlled, low cost, compact and reliable analytical system was implemented. A linear working range for phenylglyoxylic acid concentrations up to 700?mg?L?1 (r 2?=?0.995, n?=?7), was obtained, with a detection limit of 37?mg?L?1. The system handles about 43 determinations per hour yielding precise results (relative standard deviation?<?5%, n?=?10). The developed methodology was applied to the determination of phenylglyoxylic acid in urine samples and the obtained results were in agreement with those furnished by the comparison method with relative percentage deviations lower than 6.6%.  相似文献   

20.
Palladium is determined by reaction with tin(II) chloride and rhordamine-6G in hydrochloric acid medium, flotation of the ion-association complex, [(R6G+)2Pd (SnCl?3)4]·[(R6G+) (SnCl?3] with di-isopropyl ether, and dissolution in acetone for spectrophotometry. The molar absorptivity is 2.84 x 105 l mol?1 cm?1 at 530 nm; Beer's law is obeyed in the range 0.05–0.35 μg Pd ml?1. Other platinum metals and silver interfere. Traces of palladium in silver metal are determined after extraction of palladium with dimethylglyoxime in chloroform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号