首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
An approach for the sensitive and selective determination of Ag+, Cu2+ and Hg2+ ions was developed based on the fluorescence quenching of mercaptopropionic acid (MPA) capped CdTe quantum dots in the existence of hydroxyapatite (HAP) nanoribbon spherulites. Among various metal ions investigated, it was found that the fluorescence of CdTe QDs was only sensitive to Ag+, Cu2+ and Hg2+ ions. The addition of HAP into the CdTe system could bring forward a sensitivity improvement of about 1 to 2 orders of magnitude in the detection of Ag+ and Cu2+ compared with the plain CdTe system without the existence of HAP; while there was no sensitization effect for Hg2+. Under optimal conditions, the detection limits for Ag+, Cu2+ and Hg2+ were 20, 56 and 3.0 nmol·L?1, respectively, and the linear ranges were 0.02–50, 0.056–54 and 0.003–2.4 µmol·L?1, respectively. Mechanisms of both QDs fluorescence quenching by metal ions and the sensitization effect by HAP were also discussed.  相似文献   

3.
夏云生曹春  朱昌青 《中国化学》2007,25(12):1836-1841
Three different size CdTe quantum dots (QDs) capped by 3-mercaptopropionic acid (MPA) have been prepared in aqueous solutions, and their interactions with Cu^2+ and Hg^2+ have been investigated. The opposite size-dependent fluorescence quenching of CdTe QDs by Hg^2+ and Cu^2+ was observed: Hg^2+ quenched smaller particles more efficiently than larger ones while larger particles were more markedly quenched by Cu^2+. Based on the different size responses, Hg^2+ and Cu^2+ were respectively detected with high sensitivity and selectivity, for the first time, using the QDs with different sizes but the same components and capping ligands.  相似文献   

4.
A simple and effective ratiometric fluorescence sensor of CdTe QDs/GCNNs for on-site and rapid analysis of Cu2+ has been established by mixing physically CdTe QDs and graphite carbon nitride (GCNNs). Two emissions peaks of CdTe QDs at 572 nm and GCNNs at 436 nm are both excitated at 340 nm. Under a UV lamp, fluorescent of traffic yellow CdTe QDs is linearly quenched by Cu2+ (as the detection signal), while blue GCNNs remains unchanged (as the reference), resulting in a distinguishable color change gradually from pink yellow to blue. The limit of detection (LOD) of this new sensor for Cu2+ is as low as 0.47 ng mL−1 with 1.4 % RSD. The established method has been successfully applied to detection of Cu2+ in various drinks with satisfactory results. Moreover, a paper-based sensor, which has been prepared by soaking cellulose acetate membrane in CdTe QDs/GCNNs sensor solution, has a wide semiquantitative detection range for Cu2+ (0.01 ~ 5.0 μg mL−1). It has realized successfully on-site and rapid determination of Cu2+ in red wine without any pretreatment procedure and is of great promotion and application value in determination of Cu2+ in liquid samples.  相似文献   

5.
For the first time, we report a sensitive and selective method to detect Cu2+ based on the electrochemiluminescence quenching of CdTe quantum dots (QDs) in aqueous solution. The mercaptosuccinic acid (MSA) protected CdTe QDs were prepared and characterized with UV, fluorescence and ECL. The anodic ECL quenching mechanism was attributed to the fact that MSA capping was removed from the surface of the CdTe QDs and preferentially bound with Cu2+. The displacement of MSA capping layer created imperfections on the CdTe QDs surface, and eventually led to the ECL quenching. The quenching effect of Cu2+ on the anodic ECL of CdTe QDs was found to be selective and concentration dependent, so we applied it to develop a method for the sensitive and selective detection of Cu2+. With the proposed method, the concentration of Cu2+ could be detected in the range of sub-nanomolar to micromolar levels.  相似文献   

6.
A sensitive sensor for mercury (II) and copper (II) synchronous detection was established via the changed photoluminescence of CdTe quantum dots (QDs) multilayer films in this work. QDs were deposited on the quartz slides to form QDs-multilayer films by electrostatic interactions with poly(dimethyldiallyl ammonium chloride) (PDDA). Hg2+ or Cu2+ could quench the photoluminescence of the QDs-multilayer films, and glutathione (GSH) was used to remove Hg2+ or Cu2+ from QDs-multilayer films due to strong affinity of GSH-metal ions, which resulted in the recovered photoluminescence of QDs-multilayer films. There are good linear relationships between the metal ions concentration and the photoluminescence intensity of QDs in the quenched and recovered process. It was found that the Stern–Volmer constants for Hg2+ are higher than that for Cu2+. Based on different quenching and recovery constant between Hg2+ and Cu2+, the synchronous detection of Hg2+ and Cu2+ can be achieved. The linear ranges of this assay were obtained from 0.005 to 0.5 μM for Hg2+ and from 0.01 to 1 μM for Cu2+, respectively. And the artificial water samples were determined by this method with satisfactory results, the recoveries for Hg2+ and Cu2+ ions were found in the range of 90.4–106.4%. To the best of our knowledge, it is the first report about the synchronous detection of Hg2+ and Cu2+ by using quenched and recovered photoluminescence of quantum dots multilayer films.  相似文献   

7.
In this study, we have successfully prepared surface modified zinc oxide quantum dots (M-ZnO QDs) with ultra-stable fluorescence and excellent hydrophilicity through introducing (3-aminopropyl)triethoxysilane (APTES). The as-prepared M-ZnO QDs under the optimum condition presented strong yellow fluorescence emission under 355 nm excitation and showed satisfied reproducibility. Physical and chemical properties of the synthesized ZnO QDs were further studied by various characterization techniques. Transmission electron microscopy showed homogeneous distribution of spherical M-ZnO QDs with the average particle size of 4.03 nm. According to the characteristic that metal ions can quench fluorescence, M-ZnO QDs-based fluorescence sensor for the detection of Cu2+ in aqueous solution is developed in this work, which has the advantages of excellent selectivity, good sensitivity and a wide linear range. The limit of detection was 0.51 μM and the linear detection range was 1–200 μM for Cu2+ determination. The practicability of the fluorescent probe is further validated in the lake water and the satisfactory spiked recoveries of Cu2+ ranges from 99.1 % to 108.8 %. Besides, M-ZnO QDs displayed concentration inhibition effect and strain effect on the growth of fungi. Thus, the as-prepared M-ZnO QDs are demonstrated to be promising for Cu2+ determination and anti-fungal applications.  相似文献   

8.
High-quality cysteamine-coated CdTe quantum dots (CA-CdTe QDs) were successfully synthesized in aqueous phase by a facile one-pot method. Through hydroxylamine hydrochloride-promoted kinetic growth strategy, water-soluble CA-CdTe QDs could be obtained conveniently in a conical flask by a stepwise addition of raw materials. The photoluminescence quantum yield (PL QY) of the obtained QDs reached 9.2% at the emission peak of 520 nm. The optical property and the morphology of the QDs were characterized by UV–vis absorption spectra, photoluminescence spectra (PL) and transmission electron microscopy (TEM) respectively. Furthermore, the fluorescence of the resultant QDs was quenched by copper (II) (Cu2+) and mercury (II) (Hg2+) meanwhile. It is worthy of note that to separately detect Hg2+, cyanide ion could be used to eliminate the interference of Cu2+. Under the optimal conditions, the response was linearly proportional to the logarithm of Hg2+ concentration over the range of 0.08–3.33 μM with a limit of detection (LOD) of 0.07 μM.  相似文献   

9.
Copper is a highly toxic environmental pollutant with bioaccumulative properties. Therefore, sensitive detection of Cu2+ is very important to prevent over-ingestion, and visual detection is preferred for practical applications. In this work, we developed a simple and environmental friendly approach to synthesize hyperbranched polyethyleneimine-protected copper nanoclusters (hPEI-Cu NCs) with great stability against extreme pH, high ionic strength, thiols etching and light illumination, which were then conjugated to the surface of silica coated CdSe quantum dots (QDs) to design a ratiometric fluorescence probe. In the presence of different amounts of Cu2+ ions, the fluorescence of Cu NCs can be drastically quenched, while the emission from QDs stayed constant to serve as a reference signal and the color of the probe changed from yellow-green to red, resulting in ratiometric and visualization detection of Cu2+ ion with high accuracy. The detection limit for Cu2+ was estimated to be 8.9 nM, much lower than the allowable level of Cu2+ in drinking water (∼20 μM) set by U.S. Environmental Protection Agency. Additionally, this probe can be also applied for the determination of Cu2+ ion in complex real water samples.  相似文献   

10.
CdS quantum dots (QDs) have been prepared and modified with chitosan. Based on the quenching of fluorescence signals of the functionalized CdS QDs at 531 nm wavelength and enhancement of signals the 400–700 nm wavelength range by Cu2+ at pH 4.2, a simple, rapid and specific method for Cu2+ determination is presented. Under optimum conditions, the relative fluorescence intensity of CdS QDs is linearly proportional to copper concentration from 8.0 nmol L?1 to 3.0 μmol L?1 with a detection limit of 1.2 nmol L?1. The mechanism can be explained in terms of strong binding of Cu2+ onto the surface of CdS, resulting in a chemical displacement of Cd2+ ions and the formation of CuS on the surface of the QDs.  相似文献   

11.
A novel fluorescent probe for Cu2+ determination based on the fluorescence quenching of glyphosate (Glyp)-functionalized quantum dots (QDs) was firstly reported. Glyp had been used to modify the surface of QDs to form Glyp-functionalized QDs following the capping of thioglycolic acid on the core–shell CdTe/CdS QDs. Under the optimal conditions, the response was linearly proportional to the concentration of Cu2+ between 2.4 × 10−2 μg mL−1 and 28 μg mL−1, with a detection limit of 1.3 × 10−3 μg mL−1 (3δ). The Glyp-functionalized QDs fluorescent probe offers good sensitivity and selectivity for detecting Cu2+. The fluorescent probe was successfully used for the determination of Cu2+ in environmental samples. The mechanism of reaction was also discussed.  相似文献   

12.
Luminescent CdSe-ZnS quantum dots (QDs) were modified with bovine serum albumin (BSA) and used as selective copper ion probe. The fluorescence of the water-soluble QDs can be quenched only by Cu2+ and Fe3+ in physiological buffer solution. Approximate concentrations of other physiologically important cations, such as Zn2+, Na+ and K+ etc. have no effect on the fluorescence. Adding F to form the colorless complex FeF63− can eliminate the interference of Fe3+. The detection limit of Cu2+ ions was 10 nM. The results can be explained in terms of strong binding of Cu2+ onto the surface of CdSe resulting in a chemical displacement of Cd2+ ions and the formation of CuSe on the surface of the QDs.  相似文献   

13.
Water-soluble CdTe quantum dots (QDs) capped with three different thioalkyl acids (mercaptoacetic acid, cysteine and glutathione) were synthesized in aqueous solution. In basic media, K3Fe(CN)6 could directly oxidize the water-soluble CdTe QDs to produce strong CL emission. It was found that the CL intensity depended on the capping ligand and size of CdTe QDs. CL spectra and fluorescence spectra of the system were measured to investigate the CL reaction mechanism. Moreover, the effects of 17 metal ions on the CL system were carefully investigated. Ca2+, Co2+, Mn2+, Hg2+, Mg2+, Cu2+, Ni2+, Cr3+ and Fe3+ could markedly inhibit the CL signal of the K3Fe(CN)6–CdTe QDs system, which makes it applicable for the detection of such ions. This work is of importance for gaining a better understanding of the unique optical and physical chemistry properties of QDs, and it is also helpful to find more practical applications of QDs.  相似文献   

14.
Anodic electrochemiluminescence (ECL) of 3‐mercaptopropionic acid (MPA)‐ capped CdTe/CdS core‐shell quantum dots (QDs) with tripropylamine (TPrA) as the co‐reactant were studied in aqueous (Tris buffer) solution for the first time. The results suggest that the oxidation of TPrA at a glassy carbon electrode (GCE) surface participated in the ECL of QDs, and the onset potential and the intensity of ECL of CdTe/CdS QDs were affected seriously by TPrA, as the co‐reactant, in Tris buffer solution. The onset potential of ECL in this new system was about +0.5 V (vs. Ag/AgCl) and the ECL intensity greatly enhanced when TPrA was present. Various influencing factors, such as the electrolyte, pH, QDs concentration, potential range and scan rates on the ECL were studied. Based on the selective quenching by Cu2+ to the light emission from CdTe/CdS QDs/TPrA system, a highly sensitive and selective method for the determination of Cu2+ was developed. At the optimal conditions, the relative ECL intensity, I0/I, was proportional to the concentration of Cu2+ from 14 nM to 0.21 μM with the detection limit of 6.1 nM based on the signal‐to‐noise ratio of 3. The possible ECL mechanism of QDs and the quenching mechanism of ECL were proposed.  相似文献   

15.
Heavy metal ions such as Hg and Pb are hazardous due to very high toxicity, mobility, and ability to accumulate through the food chain or atmosphere in the environment system. Therefore, ultrasensitive determination of mercury and lead is important to provide an evaluation index of ions in aqueous environment. This paper describes the investigation of surface modified quantum dots (QDs) as a sensing receptor for Hg2+ and Pb2+ ion detection by optical approach. Water-soluble L-cysteine-capped CdS QDs have been synthesized in aqueous medium. These functionalized nanoparticles were used as a fluorescence sensor for Hg2+ and Pb2+ ions, involved in the fluorescence quenching. The effect of foreign ions on the intensity of CdS QDs showed a low interference response toward other metal ions except Cu2+ and Fe2+ ions. The limit of detection (LOD) of this system is found to be 1.0 and 3.0 nM for Hg2+ and Pb2+ ions, respectively.  相似文献   

16.
This Letter describes the synthesis of a novel fluorescein-based derivative used as the fluorescence sensor for Pd2+ detection. The sensor can show highly selective and sensitive ‘off-on’ fluorescence response only in the presence of Cu2+ as a synergic trigger, which presents a new strategy for Pd2+ detection method.  相似文献   

17.
A simple colorimetric chemosensor 1 was developed for the sequential detection of Cu2+ and S2?. Sensor 1 could rapidly detect Cu2+ by an obvious color change from colorless to yellow. The binding mode of 1 to Cu2+ was determined to be a 1:1 complexation stoichiometry through Job plot and ESI-mass spectrometry analyses. The sensing mechanism of Cu2+ by 1 was proposed by theoretical calculations. Importantly, the detection limit for Cu2+ was found to be 0.12 μM, which was much lower than the recommended value (31.5 μM) of the World Health Organization (WHO). Additionally, 1 could detect and quantify Cu2+ in real water samples. Moreover, the resulting 1-Cu2+ complex could be used as a highly selective colorimetric sensor for S2? in the presence of various anions without any interference. The detection limit for S2? was determined to be 1.66 μM, which was much lower than the guideline (14.8 μM) recommended by WHO in fresh water.  相似文献   

18.
《Electroanalysis》2017,29(2):441-447
A convenient and simple electrochemiluminescence (ECL) method was employed to detect trace amounts of Cu2+ in drinking water. This method is based on the inhibitory effect of Cu2+ on the ECL of Ru(phen)32+ and 1,4,8,11‐tetraazacyclotetradecane (cyclam) system. ECL intensity of Ru(phen)32+ was considerably enhanced by the addition of cyclam because of the ECL reaction between them. The ECL intensity of Ru(phen)32+/cyclam system rapidy decreased with the addition Cu2+ because of the formation of chelate complex [Cu(cyclam)]2+. Good linear response (R 2=0.9948) was obtained at Cu2+ concentration of 1.0×10−9−1.0×10−5 mol ⋅ L−1 at glassy carbon electrode in 0.1 mol ⋅ L−1 phosphate buffer (pH 9.0). Observed detection limit of 4.8×10−10 mol ⋅ L−1 satisfied the maximum contaminant level goal (MCLG) for Cu2+ set by the US Environmental Protection Agency (US EPA). Applicability of the proposed method was verified by the good reproducibility and stability of the method when applied to determine Cu2+ in tap water and simulated wastewater. Thus, a novel ECL detection method was developed for Cu2+ detection.  相似文献   

19.
A highly selective and sensitive coumarin-based chemodosimeter 1 for Cu2+ in water is reported in this work. 1 was designed and facilely synthesized by a one-step reaction with coumarin as a fluorophore and 2-picolinic acid as the binding moiety, which showed very week fluorescence in buffer solution, and its fluorescence was considerably enhanced by the addition of Cu2+ at room temperature in 5 min. Mechanism study suggested that Cu2+ promoted the hydrolysis of 1 via the catalytic sensing cycle, generating a highly fluorescent product 7-hydroxycoumarin with fluorescence signal greatly amplified. The probe exhibited remarkably selective fluorescence enhancement to Cu2+ over other metal ions at 454 nm, with a detection limit of 35 nM Cu2+. Under optimal condition, 1 was successfully used for the determination of Cu2+ in fetal equine serum and two water samples.  相似文献   

20.
《Analytical letters》2012,45(8):1501-1512
ABSTRACT

A poly (vinyl chloride) (PVC) based membrane of cephaloridine as a novel ionophore exhibits good potentiometric response for Cu2+ over a wide concentration range (10?5-10? M) with a slope of 28.5 mV per decade. The detection limit is 3.5 × 10?6 M. The response time of the sensor is < 60 s. The electrode has been used for a period of one month and exhibits good selectivity towards Cu2+ in comparison to alkali, alkaline earth, transition and heavy metal ions, with no interference caused by Pb2+ Cd2+ and Fe2+ which are known to interfere with many other copper electrodes. The electrode can be used in the pH range from 4.0 to 6.5 and it can also be used in partially non-aqueous medium having up to 10 (v/v) non aqueous content and in the presence of cationic surfactants at concentrations less than 10?3 M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号