首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
《Analytical letters》2012,45(3):615-629
Abstract

In this study, a new ion-selective electrode for Sm3+ is described, illustrating 2-[(E)-1-(1H-pyrrol-2-yl)methylidene]-1-hydrazinecarbothioamide (PMH) in a poly(vinylchloride) (PVC) membrane with nitrobenzene (NB) as a plasticizer and sodium tetraphenyl borate (NaTPB) as an anionic additive. The proposed sensor exhibited a Nernstian response for Sm3+ ions over a wide concentration range between 1.0 × 10?2 and 1 × 10?6 M, with a detection limit of 5.2 × 10?7 M in the pH range of 4.2–8.5. Moreover, the sensor displayed the Nernstian slope of 19.8 ± 0.3 mV per decade, having a fast response time within 10 s over the entire concentration range. This electrode presented very good selectivity and sensitivity toward the Sm3+ ions over a wide variety of cations, including alkali, alkaline earth, transition-metal, and heavy-metal ions. It was used as an indicator electrode in the potentiometric titration of Sm3+ ions with EDTA. The membrane sensor was also applied to the determination of fluoride ions in mouthwash samples.  相似文献   

2.
《Analytical letters》2012,45(12):2251-2266
Abstract

A highly selective and sensitive poly(vinyl chloride) membrane electrode, using 4-4′-Methylenediantipyrine as an ionophore, has been prepared and examined as a Ba2+-selective electrode. The influence of the anion excluder (sodium tetraphenyl borate, NaTPB) and the effect of the plasticizers dibutyl phthalate (DBP), nitrobenzene (NB), and benzyl acetate (BA) were studied. The best performance was obtained with the sensor having a membrane composition (w/w) of (MAP, 2.0%), (PVC, 30%), (NB, 66%), (NaTPB, 2.0%) with a wide working concentration range of 1.0 × 10?6 to 1.0 × 10?2 M between the pH values of 3.4 and 10.6. Furthermore, a Nernstian slope of 29.7±0.3 mV/decade of activity was demonstrated with a response time of 15 s. The sensor could be used over a period of 2 months with no potential divergence, revealing a good selectivity for a broad variety of cations including alkali, alkaline earth, heavy and transition metals. Regarding the practical applicability of this sensing device, it was successfully applied for the Ba2+ ions detection in a lithophone pigment and as an indicator electrode in the potentiometric titration of the under study cations.  相似文献   

3.
Novel polymeric membrane electrode (PME) and coated graphite electrode (CGE) for nickel ion were prepared based on 2,9-(2-methoxyaniline)2-4,11-Me2-[14]-1,4,8,11-tetraene-1,5,8,12-N4 as a suitable neutral ionophore. The addition of lipophilic anion excluder (NaTPB) and various plasticizers viz o-nitrophenyloctylether (o-NPOE), dioctylphthalate (DOP), dibutylphthalate (DBP), 1-chloronaphthalene (CN) and tri-n-butylphosphate (TBP) have found to improve the performance of the sensors. The best performance was obtained for the membrane sensor having a composition of I:NaTPB:TBP:PVC in the ratio 6:4:100:90 (w/w; mg). The electrodes exhibit Nernstian slopes for Ni2+ ions over wide concentration ranges of 4.6 × 10?7–1.0 × 10?1 M for PME and 7.7 × 10?8–1.0 × 10?1 M for CGE with limits of detection of 2.7 × 10?7 M for PME and 3.7 × 10?8 M for CGE. The response time for PME and CGE was found to be 10 and 8 s respectively. The potentiometric responses are independent of the pH of the test solution in the pH range 3.0–8.0. The proposed electrodes revealed good selectivities over a wide variety of other cations including alkali, alkaline earth, transition and heavy metal ions. The coated graphite electrode was used as an indicator electrode in the potentiometric titration of nickel ion with EDTA and in direct determination in different fruit juices and wine samples.  相似文献   

4.
In this study, a potentiometric sensor based on a pencil graphite electrode (PGE) coated with polypyrrole doped with Titan yellow dye (PPy/TY) was prepared for potentiometric determination of magnesium ion in aqueous solutions. The structural characteristics of magnesium sensor electrode (PGE/PPy/TYMg) were studied using scanning electron microscopy and Fourier transform infrared along with energy-dispersive spectroscopy. Under the optimal conditions, the electrode reveals a good Nernstian behavior with slope of 28.27 ± 0.40 mV per decade over the concentration range of 1.0 × 10?5–5.0 × 10?2 M and a detection limit of 6.28 × 10?6 M. The potentiometric response of fabricated electrode toward magnesium ion was found to be independent of the pH of the test solution in the pH range of 4.5–8.0. The electrode showed fast response time (<10 s) and good shelf lifetime (>2 months). The prepared magnesium sensor electrode can also be used as an indicator electrode in potentiometric titration of Mg2+ with EDTA with distinguished end point. The electrode revealed good selectivity with respect to many cations including alkali, alkaline earth, transition and heavy metal ions. The introduced magnesium electrode was used for measurement of Mg2+ ion in real samples without any serious interferences from other ions.  相似文献   

5.
《Analytical letters》2012,45(7):1041-1055
Abstract

A polyvinyl chloride (PVC) membrane sensor for ytterbium(III) ions was prepared, based on 2,5-bis(5-tert-butyl-benzoxazol-2-yl)thiophene (BBT) as a membrane carrier. The sensor illustrates the following characteristics: a linear dynamic range of 1.0 × 10?6 to 1.0 × 10?2 M; a Nernstian slope of 19.7 ± 0.5 mV decade?1; a detection limit of 4.4 × 10?7 M; a response time of <10 s; and use for at least 2 months without any significant potential divergence in the pH range of 3.5–8.4. Moreover, the recommended selective sensor revealed a comparatively satisfactory selectivity regarding most of the alkali and alkaline earth ions and some of the transition-metal and heavy-metal ions. In fact, it was used as an indicator electrode in the Yb(III) potentiometric titration with ethylene diamine tetra-acetic acid (EDTA) and the determination of concentration of Yb(III) ions in soil and sediment samples.  相似文献   

6.
《Analytical letters》2012,45(3):495-506
Abstract

A Dy(III) ion‐selective membrane sensor has been fabricated from polyvinyl chloride (PVC) matrix membrane containing a new asymmetrical Schiff's base [(E)‐N‐(2‐hydroxybenzylidene)benzohydraide] or BBH as a neutral carrier, sodium tetraphenyl borate (NaTPB) as an anionic excluder and nitrobenzene (NB) as a plasticizing solvent mediator. The membrane sensor displays linear potential response in the concentration range of 1.0×10?2–1.0×10?6 M of Dy(III). The electrode exhibits a nice Nernstian slope of 20.1±0.8 mV/decade in the pH range of 3.0–8.0. The sensor has a relatively short response time in whole concentration ranges (<20 s). The detection limit of the proposed sensor is 8.0×10?7 M (~128 ng/mL), and it can be used over a period of six weeks. The selectivity of the proposed sensor with respect to other cations, (alkali, alkaline earth, transition and heavy metal ions) and especially lanthanid ions, is excellent. The practical utility of the sensor has been demonstrated by using it as an indicator electrode in the potentiometric titration of Dy(III) with EDTA.  相似文献   

7.
《Analytical letters》2012,45(2):298-311
Abstract

A polyvinyl chloride (PVC) based membrane sensor for terbium ions was prepared by employing Hematoporphyrin (HP) as an ionophore. The sensor revealed a very good selectivity (expect for the Fe3+ion) with respect to common alkali, alkaline earth and heavy metal ions. The plasticized membrane electrode exhibits a Nernstian response for Tb3+ ions over a wide concentration range (1.0 × 10?6 ? 1.0 × 10?2 M) with a slope of 19.8±0.3 mV per decade and low detection limit of 7.4 × 10?7 M. The developed sensor was used in determination of F? in mouth wash preparation sample.  相似文献   

8.
《Analytical letters》2012,45(13):2322-2343
Abstract

In this research, a novel thulium(III) potentiometric membrane sensor based on 4-methyl-1,2-bis(2-pyridinecarboxamido) benzene (MPB) is described. The sensor exhibits a Nernstian response over a concentration range of 1.0 × 10?7 M to 1.0 × 10?1 M, with a detection limit of 9.0 × 10?8 M. The best performance was achieved with a membrane composition of 30% PVC, 60% nitrobenzene (NB), 6% MPB, and 4% sodium tetraphenylborate (NaTPB). It was found that at the pH range of 3.6 to 9.0, the potential response of the sensor was not affected by the pH. Furthermore, the electrode presents satisfactory reproducibility, very fast response time (15 s), and relatively good discriminating ability for Tm(III) ions with respect to many common cations and lanthanide ions. The validation of the proposed electrode was tested by using Coal and Fuel Ash (FFA 1 Fly Ash) as a Certified Reference Material (CRM).  相似文献   

9.
Novel PVC membrane (PME) and coated graphite (CGE) Cu2+‐selective electrodes based on 5,6,7,8,9,10‐hexahydro‐2H‐1,13,4,7,10‐benzodioxatriazacyclopentadecine‐3,11(4H,12H)‐dione are prepared. The electrodes reveal a Nernstian behavior over wide Cu2+ ion concentration ranges (1.0×10?7–1.0×10?1 M for PME and 1.0×10?8–1.0×10?1 M for CGE) with very low limits of detection (7.8×10?8 M for PME and 9.1×10?9 M for CGE). The potentiometric responses are independent of the pH of the test solutions in the pH range 2.7–6.2. The proposed electrodes possess very good selectivities for Cu2+ over a wide variety of the cations including alkali, alkaline earth, transitions and heavy metal ions. The practical utility of the proposed electrodes have been demonstrated by their use in the study of interactions between copper ions and human growth hormone (hGH) in biological systems, potentiometric titration of copper with EDTA and determination of copper content of a sheep blood serum sample and some other real samples.  相似文献   

10.
《Electroanalysis》2006,18(10):1019-1027
A new PVC membrane potentiometric sensor for Ag(I) ion based on a recently synthesized calix[4]arene compound of 5,11,17,23‐tetra‐tert‐butyl‐25,27‐dihydroxy‐calix[4]arene‐thiacrown‐4 is developed. The electrode exhibits a Nernstian response for Ag(I) ions over a wide concentration range (1.0×10?2?1.0×10?6 M) with a slope of 53.8±1.6 mV per decade. It has a relatively fast response time (5–10 s) and can be used for at least 2 months without any considerable divergence in potentials. The proposed electrode shows high selectivity towards Ag+ ions over Pb2+, Cd2+, Co2+, Zn2+, Cu2+, Ni2+, Sr2+, Mg2+, Ca2+, Li+, K+, Na+, NH4+ ions and can be used in a pH range of 2–6. Only interference of Hg2+ is found. It is successfully used as an indicator electrode in potentiometric titration of a mixture of chloride, bromide and iodide ions.  相似文献   

11.
《Analytical letters》2012,45(17):2838-2852
Abstract

2-Ethoxy-1-ethoxycarbonyl-1,2-dihydroquinoline (EED) was found to be a suitable neutral ionophore for the preparation of a highly selective samarium (Sm)(III) membrane sensor. Poly vinylchloride (PVC)–based membranes of EED with sodium tetraphenyl borate (NaTPB) as an anionic additive and dibutylphthalate (DBP), nitrobenzene (NB), and acetophenone (AP) as plasticizing solvent mediators were prepared and investigated as Sm(III) sensors. The sensor exhibited a Nernstian response over a concentration range of 1.0 × 10?6 to 1.0 × 10?2 M, with a detection limit of 5.0 × 10?7 M. The best performance was achieved with a membrane composition of 30% PVC, 66% dibutyl phthalate (DBP), 2% EED, and 2% sodium tetraphenyl borate (NaTPB). It has a very short response time, in the whole concentration range (~10s), and can be used for at least 10 weeks. The proposed electrode shows a very good selectivity toward Sm(III) ions over a wide variety of cations, including alkali, alkaline earth, transition-metal, and heavy-metal ions. The sensor was applied to the determination of Sm ions in binary mixtures.  相似文献   

12.
《Electroanalysis》2004,16(12):1002-1008
Preliminary theoretical studies revealed the selective complexation of bis (2‐mercaptoanil) diacetyl (BMDA) with La3+ over several alkali, alkaline earth and heavy metal ions. Thus, novel PVC‐based membrane (PBM) and coated graphite membrane (CGM) sensors for La(III) based on BMDA were prepared. The electrodes display Nernstian behavior over wide concentration ranges (i.e., 1.0×10?5–1.0×10?1 M for PBM and 1.0×10?6–1.0×10?1 M for CGM). The potential response of sensors was pH independent in the range of 4.0–8.0. The sensors possess satisfactory reproducibility, fast response time (<15 s), and specially excellent discriminating ability for La3+ ions with respect to most of the cations. The membrane sensor was used as an indicator electrode in potentiometric titration of lanthanum ions with EDTA. The coated graphite membrane electrode was applied in determination of fluoride ions in mouth wash preparations.  相似文献   

13.
《Analytical letters》2012,45(13):2026-2040
Abstract

The potentiometric response characteristics of a new copper(II) ion-selective PVC membrane electrode based on erythromycin ethyl succinate (EES) as ionophore were investigated. The electrode exhibited a Nernstian response to Cu2+ ions over the activity range of 1.5 × 10?2 to 2.0 × 10?6 mol L?1 with a limit of detection of 6.3 × 10?7 mol L?1. Stable potentials were obtained in the pH range of 5.5–6.5. The potentiometric selectivity coefficients were calculated by using fixed interference method and revealed no important interferences except for Ag+. This electrode was successfully applied as an indicator electrode in determination of copper ions in real water samples.  相似文献   

14.
《Analytical letters》2012,45(14):2710-2726
Abstract

A PVC membrane electrode for dysprosium(III) [Dy(III)] ions was constructed, having its basis on benzoxazoleguanidine (BG) as a suitable ionophore. The sensor presents a linear dynamic range of 1.0 × 10?6–1.0 × 10?1 M, with a Nernstian slope of 19.5 ± 0.4 mV decade?1 and a detection limit of 4.7 × 10?7 M. The response time is quick (less than 10 s). It can be used in the pH range of 3.3–8.4, and its duration is at least 2 mo without any considerable, noticeable potential divergence. The recommended sensor revealed comparatively good selectivity with respect to most alkali, alkaline earth, some transition, and heavy metal ions. It was successfully employed as an indicator electrode in the potentiometric titration of Dy(III) ions with EDTA. The membrane sensor also applied to the determination of concentration of Dy(III) ions in soil and sediment samples. Validation with certified reference materials (CRMs) was also carried out.  相似文献   

15.
In this study, a potentiometric sensor based on a pencil graphite electrode (PGE) coated with polypyrrole doped with uranyl zinc acetate (termed PGE/PPy/U) have been prepared for potentiometric determination of uranyl in aqueous solutions. Electropolymerization reaction for preparing of U(VI) sensor electrode was carried via applying a constant current of 1.0 mA on PGA working electrode in a solution containing 8.0 mM pyrrole and 0.8 mM ZnUO2(CH3COO)4 salt. The constructed electrode displayed a linear and near Nernstian response (22.60 ± 0.40 mV/decade) to U(VI) ions in the concentration range of 1.0 × 10?6–1.0 × 10?2 M. A detection limit of 6.30 × 10?7 M and a fast response time (≤12 s) was observed during measurements. The working pH range of the electrode was 4.0–8.0 and lifetime of the sensor was at least 60 days. The electrode revealed good selectivity with respect to many cations including alkali, alkaline earth, transition and heavy metal ions. The introduced uranyl electrode was used for measurement of U(VI) ion in real samples without any serious inferences from other ions.  相似文献   

16.
《Analytical letters》2012,45(6):1075-1086
Abstract

A novel plasticized membrane sensor for Ho(III) ions based on N‐(1‐thien‐2‐ylmethylene)‐1,3‐benzothiazol‐2‐amine (TBA) as a neutral carrier was prepared. The best performance was obtained with a membrane composition of 31% PVC, 61% benzyle acetate, 2% sodium tetra phenyl borate and 6% carrier. The electrode exhibits a Nernstian response for Ho(III) ions over a particular concentration range (1.0×10?5?1.0×10?2 M) with a slope of 19.7±0.2 mV decade?1. The limit of the detection is 7.0×10?6 M. The sensor has a response time of <15 s and a useful working pH range of 4.0–9.5. The proposed sensor discriminates relatively well towards Ho(III) ions with regard to common alkali, alkaline earth, and specially lanthanide ions. It was successfully applied as an indicator electrode in a potentiometric titration of Ho(III) ions with EDTA. It was also applied in determination of fluoride ions in a mouth wash preparation. The proposed sensor was applied for the determination of Ho(III) ion concentration in binary mixtures.  相似文献   

17.
A PVC membrane electrode for Hg(II) ions, based on a new cone shaped calix[4]arene (L) as a suitable ionophore was constructed. The sensor exhibits a linear dynamic in the range of 1.0 × 10?6–1.0 × 10?1 M, with a Nernstian slope of 29.4 ± 0.4 mV decade?1, and a detection limit of 4.0 × 10?7 M. The response time is quick (less than 10 s), it can be used in the pH range of 1.5–4, and the electrode response and selectivity remained almost unchanged for about 2 months. The sensor revealed comparatively good selectivity with respect to most alkali, alkaline earth, and some transition and heavy metal ions. It was successfully employed as an indicator electrode in the potentiometric titration of Hg2+ ions with potassium iodide, and the direct determination of mercury content of amalgam alloy and water samples.  相似文献   

18.
A macrocyclic ligand “7,10,13-triaza-1-thia-4,16-dioxa-20,24-dimethyl-2,3;17,18-dibenzo-cyclooctadecane-6,14-dione” as an efficient ionophore was used into a new Cu2+ nano-composite potentiometric carbon paste sensor containing multi-walled carbon nanotubes (MWCNTs), nanosilica particles, and room temperature ionic liquid (1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, [BMP]Tf2N). This potentiometric sensor responds to copper ions in a wide linear dynamic range of 4.50 × 10?8 to 1.00 × 10?2 mol L?1 with Nernstian slope of 29.64 ± 0.10 mV per decade. The detection limit of 2.34 × 10?8 mol L?1 was obtained at the pH range 3.5–6.0. It has a fast response with response time of about 10 s, and can be used for at least 16 weeks without any considerable divergence in the potentials. The suggested sensor thus allows sensitive, selective, simple, low cost, and stable electrochemical sensing of Cu2+ ions in the presence of a large number of alkali, alkaline earth, transition and heavy metal ions. This sensor was successfully applied in the determination of copper ions in water and waste water samples.  相似文献   

19.
《Analytical letters》2012,45(14):2220-2233
The first asymmetric potentiometric UO2(II) microsensor is introduced. 5,11,17,23-tetra-tertio butyl(25,27),-bis)2-)n-]2-hydroxy-5-dinitridphenilonitrilidine) amino etoxy(26,28)-di hydroxy calix[4]arene (HAECA) was synthesized. It was found that HAECA can be used as an excellent ionophore in construction of UO2(II) microsensor. The best performance was obtained with a membrane composition containing 20% PVC, 73% dibutyl phthalate, 5% HAECA, and 2% sodium tetraphenyl borate. The proposed microsensor exhibits a Nernstian slope of 28.5 ± 0.3 mV per decade over a wide concentration range of 1.0 ×10?10–1.0 × 10?4 M and a detection limit of 6.0 × 10?11 M. The potentiometric response of the sensor is independent to the pH of the solution in the range of 2.2–3.6.  相似文献   

20.
The Cu (II) imprinted polymer glassy carbon electrode (GCE/Cu-IP) was prepared by electropolymerization of pyrrole at GCE in the presence of methyl red as a dopant and then imprinting by Cu2+ ions. This electrode was applied for potentiometric and voltammetric detection of Cu2+ ion. The potentiometric response of the electrode was linear within the Cu2+ concentration range of 3.9 × 10?6 to 5.0 × 10?2 M with a near-Nernstian slope of 29.0 mV decade?1 and a detection limit of 5.0 × 10?7 M. The electrode was also used for preconcentration anodic stripping voltammetry and results exhibited that peak currents for the incorporated copper species were dependent on the metal ion concentration in the range of 1.0 × 10?8 to 1.0 × 10?3 M and detection limit was 6.5 × 10?9 M. Also the selectivity of the prepared electrode was investigated. The imprinted polymer electrode was used for the successful assay of copper in two standard reference material samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号