首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this work, a fast, sensitive and miniaturised conductometric sensor based on interdigitated electrodes, working in differential mode, was developed for the determination of cationic surfactants. The membrane was composed of a polymer (PVC), a plasticizer (dinonylphtalate (DNP)) and a carrier (sodium tetraphenylborate (NaBΦ4)). The sensor response was linear from at least 10?9 M to 10?2 M for dodecyltrimethylammonium (DTA+). No significant loss of sensor response was observed after 8 weeks. The sensor exhibited a lower sensitivity and a narrower dynamic range for tetrabutylammonium, decyltrimethylammonium and cetyltrimethylammonium cationic surfactants. A ten times lower sensitivity was observed for laurylsulfate anionic surfactant, (LS?).  相似文献   

2.
A stripping voltammetric finish for the measurement of total anionic surfactant has been developed. A limit of detection of 5.0 μg 1?1 anionic surfactant was observed with a linear calibration from 5.0 to 500 μg 1?1 in the original sample.  相似文献   

3.
 A potentiometric flow injection method for the determination of anionic polyelectrolytes utilizing a flow-through type surfactant-selective electrode detector is described. The method is based on the detection of the concentration increase of anionic surfactant liberated from a reagent stream containing an ion associate between cationic polyelectrolyte, poly(diallyldimethylammonium chloride) and anionic surfactant, dodecylbenzenesulfonate, which is caused by the formation of a polyion complex between cationic and anionic polyelectrolytes. The response of the electrode detector as a peak-shaped signal was obtained for injected anionic polyelectrolyte samples. A linear relationship was found to exist between peak height and the logarithmic concentration of potassium poly (vinyl sulfate) (PVSK) with a slope of 30 mV decade-1 in a concentration range of 1.0×10-4 to 1.0×10-3 mol/L. Identical relationships were obtained for sodium alginate and carageenan (also anionic polyelectrolytes) as for PVSK but with a lower sensitivity. The detection limit for PVSK was 2.5×10-5 mol/L. The relative standard deviation for 5 injections of a 2.5×10-4 mol/L PVSK solution was 1.3% and the sampling rate was ca. 10 samples h-1. Received: 9 April 1996/Revised: 8 July 1996/Accepted: 14 July 1996  相似文献   

4.
A 1,3-dihexadecyl-1H-benzo[d]imidazol-3-ium-tetraphenylborate (DHBI-TPB) ion-pair implemented in DHBI-TPB surfactant sensor was used for the potentiometric quantification of anionic surfactants in detergents and commercial household care products. The DHBI-TPB ion-pair was characterized by FTIR spectroscopy and computational analysis which revealed a crucial contribution of the C–H∙∙∙π contacts for the optimal complex formation. The DHBI-TPB sensor potentiometric response showed excellent analytical properties and Nernstian slope for SDS (60.1 mV/decade) with LOD 3.2 × 10−7 M; and DBS (58.4 mV/decade) with LOD 6.1 × 10−7 M was obtained. The sensor possesses exceptional resistance to different organic and inorganic interferences in broad pH (2–10) range. DMIC used as a titrant demonstrated superior analytical performances for potentiometric titrations of SDS, compared to other tested cationic surfactants (DMIC > CTAB > CPC > Hyamine 1622). The combination of DHBI-TPB sensor and DMIC was successfully employed to perform titrations of the highly soluble alkane sulfonate homologues. Nonionic surfactants (increased concentration and number of EO groups) had a negative impact on anionic surfactant titration curves and a signal change. The DHBI-TPB sensor was effectively employed for the determination of technical grade anionic surfactants presenting the recoveries from 99.5 to 101.3%. The sensor was applied on twelve powered samples as well as liquid-gel and handwashing home care detergents containing anionic surfactants. The obtained results showed good agreement compared to the outcomes measured by ISE surfactant sensor and a two-phase titration method. The developed DHBI-TPB surfactant sensor could be used for quality control in industry and has great potential in environmental monitoring.  相似文献   

5.
The 1,2‐dichloroethane (DCE)/water interface, with an anionic surfactant, dinonylnaphthalenesulfonate (DNNS?), being present in DCE, was utilized for label‐free detection of albumin. An oil/water‐type flow cell was prepared using a porous PTFE tube and dipping the tube in the DCE solution containing DNNS?. This flow cell provided a well‐defined current response linear to the albumin concentration up to 10 µM with a detection limit of 1.2 µM. The current response is due to the interfacial adsorption of albumin molecules depending on the Galvani potential difference. Possible interference from creatinine in the urine could be avoided by a conventional dialysis treatment.  相似文献   

6.
《Analytical letters》2012,45(3):495-506
Abstract

A Dy(III) ion‐selective membrane sensor has been fabricated from polyvinyl chloride (PVC) matrix membrane containing a new asymmetrical Schiff's base [(E)‐N‐(2‐hydroxybenzylidene)benzohydraide] or BBH as a neutral carrier, sodium tetraphenyl borate (NaTPB) as an anionic excluder and nitrobenzene (NB) as a plasticizing solvent mediator. The membrane sensor displays linear potential response in the concentration range of 1.0×10?2–1.0×10?6 M of Dy(III). The electrode exhibits a nice Nernstian slope of 20.1±0.8 mV/decade in the pH range of 3.0–8.0. The sensor has a relatively short response time in whole concentration ranges (<20 s). The detection limit of the proposed sensor is 8.0×10?7 M (~128 ng/mL), and it can be used over a period of six weeks. The selectivity of the proposed sensor with respect to other cations, (alkali, alkaline earth, transition and heavy metal ions) and especially lanthanid ions, is excellent. The practical utility of the sensor has been demonstrated by using it as an indicator electrode in the potentiometric titration of Dy(III) with EDTA.  相似文献   

7.
The use of aqueous catanionic surfactant mixtures in the oil-in-water (o/w) microemulsion polymerisation of styrene is reported. Catanionic surfactant mixtures of dodecyltrimethylammonium bromide 1 and sodium dodecylsulfate 3, or decanediyl-1,10-bis(dimethyldodecylammonium bromide) 2, a gemini surfactant, and the anionic surfactant 3 were used. Phase behaviour and polymerisation properties of the microemulsions were studied as a function of the total surfactant concentration and the cationic/anionic surfactant ratio. Single-phase o/w microemulsions were only formed if either the cationic or anionic surfactant were present in large excess. Upon -irradiation, polymer nanoparticles were obtained. Using dynamic light scattering, the particle radii were determined to be 10 to 20 nm, the size depending on the total surfactant concentration, the cationic/anionic surfactant ratio and the surfactant/styrene ratio. Size exclusion chromatography indicated molecular weights of polystyrene of between 3×105 and 1.4×106 Daltons. Catanionic 1/3 and 2/3 mixtures differ in their styrene solubilizations. In a 1- or 3-rich system, the solubilization efficiency can be improved by increasing the concentration of the oppositely charged minor surfactant component, while in a 2-rich system the addition of 3 only diminishes the efficiency. Possible reasons for the different behaviours are discussed.  相似文献   

8.
《Analytical letters》2012,45(10):2169-2177
Abstract

A chemical sensor for the determination of nonionic surfactants (NISs) based on surface‐plasmon resonance (SPR) phenomenon was fabricated using a gold thin film, the surface of which was modified with a self‐assembled monolayer (SAM). Stearylmercaptan was used for the SAM constituent. The magnitude of the angle shift of SPR sensor to NISs increases in this order: Triton X‐100<heptaethyleneglycol dodecyl ether (HEEG)<hexaethyleneglycol dodecyl ether (HEG)<pentaethyleneglycol dodecyl ether (PEG). This order of magnitude of angle shift is in accord with the sequence of the hydrophobicity of the NISs. The linear relationships between Δθ (the change in the resonance angle relative to the baseline value) and the concentration of NISs were obtained in the concentration range from 2×10?6 M to 1×10?5 M. The coexistence of common inorganic cations and anions at 100 times excess to the Triton X‐100 gives only a positive error less than ca. +5%. The coexistence of an anionic surfactant (sodium dodecylbenzene sulfonate) at 10 times excess to the Triton X‐100 gives a very serious positive error of ca. +320%. This serious positive error was completely eliminated by using the flow system with an anion‐exchange resin column.  相似文献   

9.
An optical sensor for the detection of anionic surfactants was developed. The optical sensing membrane is a 2-nitrophenyloctyl ether-plasticized poly(vinyl chloride) membrane incorporating a lactone-form Rhodamine B (L-RB). The response of the optical membrane to anionic surfactants was a result of the ion-pair coextraction of an anionic surfactant and a proton into the PVC membrane. The L-RB forms an ion associate with the extracted anionic surfactant; simultaneously, the formed L-RB ion associate is accompanied by a spectral change. Namely, the extracted anionic surfactant changes the color of the membrane from light pink to dark pink (absorption maximum; 558 nm). The optical membrane responds to anionic surfactants, such as dodecylbenzenesulfonate, dodecylsulfate and di-2-ethylhexyl sulfosuccinate in the concentration range from 1 to 50 microM.  相似文献   

10.
Cobalt(II) phthalocyanine [Co(II)Pc] is used as both an ionophore and chromogen for batch and flow injection potentiometric and spectrophotometric determination of anionic surfactants (SDS), respectively. The potentiometric technique involves preparation of a polymeric membrane sensor by dispersing [Co(II)Pc] in a plasticized PVC membrane. Under batch mode of operation, the sensor displays a near-Nernstian slope of −56.5 mV decade−1, wide response linear range of 7.8 × 10−4 to 8.0 × 10−7 mol L−1, lower detection limit of 2.5 × 10−7 mol L−1 and exhibits high selectivity for anionic surfactants in the presence of many common ions. Under hydrodynamic mode of operation (FIA), the slope of the calibration plot, limit of detection, and working linear range are −51.1 mV decade−1, 5.6 × 10−7 and 1.0 × 10−3 to 1.0 × 10−6 mol L−1, respectively. The spectrophotometric method is based on the use of [Co(II)Pc] solution in dimethylsulfoxide (DMSO) as a chromogenic reagent. The maximum absorption of the reagent at 658 nm linearly decreases with the increase of anionic surfactant over the concentration range 2-30 μg mL−1. The lower limit of detection is 1 μg mL−1 and high concentrations of many interfering ions are tolerated. Flow injection spectrophotometric measurements are carried out by injection of the surfactant test solution in a stream of the reagent in DMSO. The sample throughput, working range and lower detection limit are 25-30 samples h−1, 4-60 and 2 μg mL−1, respectively. The potentiometric and spectrophotometric techniques are applied to the batch and flow injection measurements of anionic surfactants in some commercial detergent products. The results agree fairly well with data obtained using the standard methylene blue spectrophotometric method.  相似文献   

11.
The paper describes a radiometric variant of the two-phase titration method for the determination of anionic surfactants of nonsoapy type. The method is based on the titration of an anionic surfactant with Septonex in alkaline medium in the presence of131I-Rose Bengal /abbreviated131I-RB/. The ion associates are extracted into chloroform. The equivalence point is determined graphically from the activity of131I-RB-Septonex associate, which is formed after the consumption of the anionic surfactant and which passes into the organic phase. The influence of131I-RB amount, pH of the titrated medium and of soap presence on the precision of anionic surfactants determination was studied. The detection limit is 2.88 g sodium n-dodecylsulphate in 10 ml of sample.  相似文献   

12.
A novel, simple, low-cost, and user-friendly potentiometric surfactant sensor based on the new 1,3-dihexadecyl−1H-benzo[d]imidazol−3-ium-tetraphenylborate (DHBI–TPB) ion-pair for the detection of cationic surfactants in personal care products and disinfectants is presented here. The new cationic surfactant DHBI-Br was successfully synthesized and characterized by nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR) spectrometry, liquid chromatography–mass spectrometry (LC–MS) and elemental analysis and was further employed for DHBI–TPB ion-pair preparation. The sensor gave excellent response characteristics for CTAB, CPC and Hyamine with a Nernstian slope (57.1 to 59.1 mV/decade) whereas the lowest limit of detection (LOD) value was measured for CTAB (0.3 × 10−6 M). The sensor exhibited a fast dynamic response to dodecyl sulfate (DDS) and TPB. High sensor performances stayed intact regardless of the employment of inorganic and organic cations and in a broad pH range (2−11). Titration of cationic and etoxylated (EO)-nonionic surfactant (NSs) (in Ba2+) mixtures with TPB revealed the first inflexion point for a cationic surfactant and the second for an EO-nonionic surfactant. The increased concentration of EO-nonionic surfactants and the number of EO groups had a negative influence on titration curves and signal change. The sensor was successfully applied for the quantification of technical-grade cationic surfactants and in 12 personal care products and disinfectants. The results showed good agreement with the measurements obtained by a commercial surfactant sensor and by a two-phase titration. A good recovery for the standard addition method (98–102%) was observed.  相似文献   

13.
《Analytical letters》2012,45(3):615-629
Abstract

In this study, a new ion-selective electrode for Sm3+ is described, illustrating 2-[(E)-1-(1H-pyrrol-2-yl)methylidene]-1-hydrazinecarbothioamide (PMH) in a poly(vinylchloride) (PVC) membrane with nitrobenzene (NB) as a plasticizer and sodium tetraphenyl borate (NaTPB) as an anionic additive. The proposed sensor exhibited a Nernstian response for Sm3+ ions over a wide concentration range between 1.0 × 10?2 and 1 × 10?6 M, with a detection limit of 5.2 × 10?7 M in the pH range of 4.2–8.5. Moreover, the sensor displayed the Nernstian slope of 19.8 ± 0.3 mV per decade, having a fast response time within 10 s over the entire concentration range. This electrode presented very good selectivity and sensitivity toward the Sm3+ ions over a wide variety of cations, including alkali, alkaline earth, transition-metal, and heavy-metal ions. It was used as an indicator electrode in the potentiometric titration of Sm3+ ions with EDTA. The membrane sensor was also applied to the determination of fluoride ions in mouthwash samples.  相似文献   

14.
《Electroanalysis》2002,14(23):1621-1628
Copper phthalocyanine was used as ion carrier for preparing polymeric membrane selective sensor for detection of iodide. The electrode was prepared by incorporating the ionophore into plasticized poly(vinyl chloride) (PVC) membrane, coated on the surface of graphite electrode. This novel electrode shows high selectivity for iodide with respect to many common inorganic and organic anions. The effects of membrane composition, pH and the influence of lipophilic cationic and anionic additives and also nature of plasticizer on the response characteristics of the electrode were investigated. A calibration plot with near‐Nernestian slope for iodide was observed over a wide linear range of five decades of concentration (5×10?6?1×10?1 M). The electrode has a fast response time, and micro‐molar detection limit (ca. 1×10?6 M iodide) and could be used over a wide pH range of 3.0–8.0. Application of the electrode to the potentiometric titration of iodide ion with silver nitrate is reported. This sensor is used for determination of the minute amounts of iodide in lake water samples.  相似文献   

15.
提出并研究了一种新颖的基于光纤折射率传感原理的表面活性剂临界胶束浓度(cmc)测定方法.应用此方法测定有代表性的阴离子表面活性剂十二烷基硫酸钠(SDS)与阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)在25℃下的cmc分别为8.05×10-3和9.11×10-4mol·L-1,与文献值比较,结果相当吻合.从而证实了本方法的准确性.进一步研究了各种条件对测量表面活性剂cmc的影响,结果表明温度和无机盐NaCl的加入对本方法测量的准确性影响小,证明了本方法对测试环境的要求不苛刻,适用性好.最后对本方法进行了重复性和稳定性测试,相对标准偏差(RSD)为0.17%,与预期符合,效果良好.  相似文献   

16.
Abstract

An optical sensor for the determination of ammonia in water based on ion pairing has been investigated. A pH-sensitive dye is immobilized as an ion pair in a silicone matrix. The colour of the dye changes from yellow to blue depending on the concentration of ammonia in the sample solution. This change is reversible. The concentration of ammonia can be determined by measuring the transmittance at a given wavelength.

All measurements were performed with a dual-beam optical meter. The measurement range was from 5.9 × 10?7 to 1 × 10?3 M (0.01 to 17 mg/l) in 0.1 M phosphate buffer of pH 8. The detection limit was 10 μg/l. The response times at a flow rate of 2.5 ml/min were 4 min for t90 and 10 min for t100 at a change from 41.9 to 82.5 μM ammonia and 12 min for t90 and 48 min for t100 at a change from 160 to 0 μM ammonia. The operational lifetime of the ammonia sensor was limited to a period of a few days only. A continuous decrease in baseline signal and relative signal change was observed over the whole measurement. The storage stability was more than 10 months (dry). With respect to possible application of the ammonia sensor to environmental analysis, the influence of pH, typical interferences, such as amines and various detergents on the sensor response was investigated. No interference due to pH was observed in the range from pH 5 to pH 9. With methyl- and ethylamine the response was not completely reversible. The sensor was affected by cationic detergents, but not by anionic or neutral detergents.  相似文献   

17.
《Analytical letters》2012,45(8):1491-1499
ABSTRACT

Glassy Carbon Electrodes coated with stearic acid provide an amperometric sensor for detection of paraquat, the active ingredient of the herbicide Gramoxone. The linear dynamic range of the sensor for Paraquat is 1.02 × 10?3 mol dm?3 to 1.02 × 10?2 mol dm?3 with the minimum detection limit 6.37 × 10?4 mol dm?3.  相似文献   

18.
《Analytical letters》2012,45(17):2838-2852
Abstract

2-Ethoxy-1-ethoxycarbonyl-1,2-dihydroquinoline (EED) was found to be a suitable neutral ionophore for the preparation of a highly selective samarium (Sm)(III) membrane sensor. Poly vinylchloride (PVC)–based membranes of EED with sodium tetraphenyl borate (NaTPB) as an anionic additive and dibutylphthalate (DBP), nitrobenzene (NB), and acetophenone (AP) as plasticizing solvent mediators were prepared and investigated as Sm(III) sensors. The sensor exhibited a Nernstian response over a concentration range of 1.0 × 10?6 to 1.0 × 10?2 M, with a detection limit of 5.0 × 10?7 M. The best performance was achieved with a membrane composition of 30% PVC, 66% dibutyl phthalate (DBP), 2% EED, and 2% sodium tetraphenyl borate (NaTPB). It has a very short response time, in the whole concentration range (~10s), and can be used for at least 10 weeks. The proposed electrode shows a very good selectivity toward Sm(III) ions over a wide variety of cations, including alkali, alkaline earth, transition-metal, and heavy-metal ions. The sensor was applied to the determination of Sm ions in binary mixtures.  相似文献   

19.
Abstract

This study investigated the effect of cationic, anionic (saturated and unsaturated), and nonionic surfactants on the formation, morphology, and surface properties of silica nanoparticles synthesized by the ammonium‐catalyzed hydrolysis of tetraethoxysilane in alcoholic media. Results indicate that at a relatively low surfactant concentration (1 × 10?3–1 × 10?6 M), cationic surfactants significantly affected the growth of silica particles as measured by dynamic light scattering and transmission electron microscopic analyses. In contrast, the anionic and nonionic surfactants showed relatively minor effects in the low concentration range. The magnitude of negative zeta potential was reduced for silica colloids that were synthesized in the presence of cationic surfactant because of charge neutralization. The presence of anionic surfactants only slightly increased the negative zeta potential while the nonionic surfactant showed no obvious effects. At high surfactant concentrations (>1 × 10?3 M), cationic and anionic surfactants both induced colloid aggregation, while the nonionic surfactant showed no effect on particle size. Raman spectroscopic analysis suggests that molecules of cationic surfactants adsorb on silica surfaces via head groups, aided by favorable electrostatic attraction, while molecules of anionic and nonionic surfactants adsorb via their hydrophobic tails.  相似文献   

20.
Urchin-like gold submicrostructures (UGS) were successfully synthesized by a seed-mediated method which is quite facile and does not need any template or surfactant agent. The effect of the added silver seeds on the morphology and size of final products were investigated, and a possible growth mechanism of crystals was proposed. Electrochemical characterization indicated that these UGS have better catalytic activity for the glucose oxidation compared with flower-like gold submicrostructures (FGS), which could be ascribed to its higher surface to volume ratio. An electrochemical nonenzymatic glucose sensor was fabricated simply by casting the UGS and Nafion solution onto glass carbon electrode. This sensor displays a wide linear range from 0.2 to 13.2 mM with a high sensitivity of 16.8 μA mM−1 cm−2, and a detection limit of 10 μM. The unique properties of this sensor, such as fast response and well stability reveal the potential application of the UGS based materials in nonenzymatic detection of glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号