首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 229 毫秒
1.
《Analytical letters》2012,45(4):563-581
Abstract

The color reaction between Xylenol orange (XO), zirconium (IV) and fluoride ions in the presence of various surfactants alone or in combination was studied at various pH. The XO -zirconium)IV)-fluoride ion ternary complex in mixed micellar media containing a low concentration of N-hexadecylpyridinium chloride (HPC) as a cationic surfactant and large amounts of (poly{oxyethylene)dodecyl ether (Brij 35) as a nonionic surfactant at weakly acidic media was found to be the most stable, and showed a remarkable bathochromic shift and clear contrast against a reagent blank. The maximum absorbance was at 600 nm in the mixed micellar media at pH 3.5, and the apparent molar absorptivities at 600 nm were 7.0 × 104 1 mol?1 cm?1 for zirconium(IV) and 1.4 × 104 1 mol?1 cm?1 for fluoride ion. The calibration curves covered the ranges of 0.5 ~ 20.0 μg/10 ml zirconium! IV) and 0 ~ 20.0 μg/10 ml fluoride ion with the Sandell sensitivities being 0.0013 μg/cm2 for zirconium(IV) and 0.0016 μg/cm2 for fluoride ion.  相似文献   

2.
Vanadium(IV) is determined by reaction with 3,5-dinitrosalicylic acid and rhodamine B in weakly acidic medium. The flotation of the ternary ion-association complex is carried out with cyclohexane followed by dissolution in acetone for subsequent spectrophotometric determination. The molar absorptivity is 5.91×105 l mole–1 cm–1 at 555 nm. Beer's law is obeyed in the range 0.05–1.5 g vanadium(IV) in 25 ml. The method is selective for vanadium(IV) in the presence of sodium fluoride and has been applied to standard reference materials.  相似文献   

3.
An automatic flow-analysis procedure for spectrophotometric determination of cationic surfactants in surface water using a solenoid micro-pump for propelling solutions of reagents and sample is described. The proposed method is based on a ternary formation complex between chromazurol S, the Fe(III) ion, and the cationic surfactant. The flow network comprised four solenoid micro-pumps controlled by a microcomputer, which performed the sampling step by loading a reaction coil with sample and reagent solutions and displacing the sample zone through the analytical path. The system is simple, easy to operate, and very flexible, with sufficient sensitivity to determine cationic surfactants in water without any pre-concentration or separation step. After determining the best operational conditions, favourable features such as a linear response between 0.34 and 10.2?mg?L?1 of surfactant (R?=?0.999), a relative standard deviation of 0.6% (n?=?11) for a sample containing 3.4?mg?L?1 of surfactant, a detection limit of 0.035?mg?L?1 of surfactant, and a sampling throughput of 72 determinations per hour were achieved. The system was used to determine cationic surfactant in river-water samples, and recovery values between 91 and 106% were achieved.  相似文献   

4.
A spectrophotometric determination of vanadium as vanadium(IV) pyridine thiocyanate is described. The blue complex is formed in acidic aqueous solution and extracted into pyridine-chloroform. Absorbance is measured at 7.40 mμ. The range of best accuracy for 1-cm cells is from about 80 to 240 μg of vanadium per ml, and sensitivity is 0.4 μg of vanadium per cm2 at 7.40 mμ. The vanadium may be present initially as vanadium(IV) or vanadium(V), which is reduced to vanadium(IV) by the large excess of thiocyanate ion added. Several elements interfere in the determination ; a separation procedure involving mercury cathode electrolysis is suggested.  相似文献   

5.
The optimum conditions for the formation of complexes of vanadium(IV) with Chrome Azurol S (CAS) in the presence of cationic (benzyldodecyldimethylammonium bromide (ST)) and non-ionic (Triton X-100, Tween 20 and Brij 35) surfactants have been determined. The complexes are formed in weakly acid solution (optimum pH: 4.6, 4.0 and 3.9) and show the absorption maxima at 603, 600 and 598 nm, respectively. The highest sensitivity was obtained for the method based on quaternary system V(IV)-CAS-ST-Triton X-100 due to the higher CAS: V(IV) molar ratio in this complex than in binary and ternary complexes: V(IV)-CAS) and V(IV)-CAS-ST. The molar absorptivity of this system is 8.08 × 104 L/mol cm. The LOD and LOQ values are: 0.006 and 0.02 μg/mL, respectively. Beer’s law is obeyed in the range: 0.02–0.60 μg/mL of V. The precision (RSD = 0.51%) and accuracy (1.9%) are satisfactory. This method has been applied to the determination of vanadium in plant materials.  相似文献   

6.
Muñoz JA  Campaña AM  Barrero FA 《Talanta》1998,47(2):387-399
The effect of several surfactants on the formation of the fluorescent ternary complex oxalate-Alizarin Red S-zirconium(IV) has been studied. In weakly acidic medium and in the presence of cationic surfactants, such as cetylpyridinium chloride, total complex formation is achieved, whereas in aqueous medium or in the presence of non-cationic micelles no significant changes are obtained in comparison with the formation of the non-fluorescent binary complex Alizarin Red S-zirconium(IV). The fluorescence characteristics of this system allowed the establishment of a simple and very sensitive method for the spectrofluorimetric determination of oxalate. The ternary complex formed exhibits its highest fluorescence signal at 605 nm with excitation at 490 nm. In these conditions, the method presents a IUPAC detection limit of 4.4 ng ml(-1). The procedure has been satisfactorily applied to a biological fluid and a vegetal tissue.  相似文献   

7.
Increased molar absorptivities and red-shifted absorbance maxima were noted only upon the addition of cetylpyridinium chloride (CPC), a cationic surfactant. A 1:2:4 gadolinium/chrome azurol S/CPC complex was forned but dissociated at [CPC]/ [Gd3+] > 4 apparently because gadolinim(III) was displaced from this complex by additional surfactant monomers. Ternary complexes having different stoichiometries formed in the presence of excess dye. Sodium dodecyl sulfate (SDS), an anionic suffactant, induced dissociation of the binary complex at micellar concentrations, suggesting that dissociation resulted from adsorption of Gd3+ cations on the negatively charged micellar surface. Addition of Triton X-100, a nonionic surfactant, had little effect at either micellar or submicellar concentrations. These results confirm that complex stability is an important factor in the use of surfactants as sensitizers in quantitative spectrophotometry.  相似文献   

8.
An extraction-free spectrophotometric method for the determination of cationic surfactants, such as cetylpyridinium chloride, cetyltrimethylammonium bromide and zephiramine is proposed, which is based on the formation of ternary complexes with Fe(III) and chrome azurol S. The molar ratio of the complex is 2:1:1 (Fe(III):chrome azurol S: cationic surfactant). The method is simple, rapid and sensitive, giving an apparent molar absorptivity of 4.5×104 L·mol?1-cm?1 and a linear range of 0.1–6.0 μmol/L cationic surfactants. The total cationic surfactant content can be determined directly in aqueous solutions by measuring the absorbance at 680 nm (pH 5.8). The method has been successfully applied to water samples.  相似文献   

9.
Differences in the ion flotation properties of palladium(II) and platinum(IV) chloro complexes in aqueous solutions are used to achieve separations of these metals. The anionic chloro complex PtCl2-6 is floated selectively with cationic surfactants of the type, RNR'3Br, from solutions of PdCl2-4 and various concentrations of hydrochloric acid. The palladium(II) does not float from solutions of ? 3.0 M HCl and the platinum(IV) floated from these solutions can be recovered free of palladium. However, the separation is incomplete as much of the platinum(IV) is also unfloated from these solutions. Quantitative separations are obtained by conversion of the palladium(II) to the cationic ammine, Pd(NH3)42+ with aqueous ammonia prior to flotation. The anionic chloro complex of platinum(IV) is unaffected by the presence of ammonia and is floated quantitatively with the surfactant n-hexadecyltri-n-propylammonium bromide from 0.01 M ammonia solutions.  相似文献   

10.
Two novel potentiometric polymeric membrane sensors for rapid and accurate determination of thorium are described. These are based on the use of trioctylphosphine oxide (TOPO) and thorium toluate (Th‐TA) as ionophores dispersed in poly(vinyl chloride) matrix membranes plasticized with nitrophenyloctyl ether. In strong nitric acid medium, Th(IV) nitrate is converted into [Th(NO3)6]2? complex and sensed as anionic divalent ion which exclude most cationic effect. Validation of the assay methods using the quality assurance standards (linearity range, accuracy, precision, within‐day variability, between‐day‐repeatability, lower detection limit and sensitivity) reveals excellent performance characteristics of both sensors. The sensors exhibit near‐Nernstian response for 1.0×10?6–1.0×10?1 M Th over the pH range 2.5–4.5. Calibration slopes of ?32.3±0.3 and ?27.2±0.2 mV/decade, precision of ±0.5 and ±0.8% and accuracy of 98.8±0.9 and 97.9±0.7% are obtained with TOPO and Th‐TA based sensors, respectively. Negligible interferences are caused by most interfering mono‐, di‐, tri‐, tetra‐, penta‐, and hexa‐valent elements commonly associated with thorium in naturally occurring minerals and ores. High concentrations of Cl?, F?, SO42?, and NO3? ions have no diverse effect. Complete removal of the effect of the interferents in complex matrices is achieved by retention of [Th(NO3)6]2? complex from 5 M nitric acid/methanol mixture (1 : 9 v/v) on a strong anion exchanger, washing out the cationic interferents followed by stripping off thorium anion complex and measurements. Both sensors are used for determining thorium in certified thorium ore samples (20–120 mg Th/kg) and some naturally occurring ores (200–600 mg Th/kg). The results obtained agree fairly well with the certified labeled values or the data obtained using X‐ray fluorescence spectrometry  相似文献   

11.
Under pseudo-first-order conditions, monomeric Cr(VI) was found to be kinetically active in the absence of picolinic acid (PA), whereas in the PA-promoted path, the Cr(VI)–PA complex undergoes nucleophilic attack by the substrate to form a ternary complex which subsequently experiences redox decomposition, leading to glyceraldehydes and Cr(IV)–PA complex. The uncatalyzed path shows a second-order dependence on [H+], whereas the PA-catalyzed path shows zero-order dependence on [H+]. Both the uncatalyzed and PA-catalyzed path show a first-order dependence on [glycerol]T and [Cr(VI)]T. The PA-catalyzed path is first order in [PA]T. All these observations remain unaltered in the presence of externally added surfactants. The effect of the cationic surfactant cetyl pyridinium chloride (CPC) and anionic surfactant sodium dodecyl sulfate (SDS) on the PA-catalyzed path have been studied. CPC inhibits, whereas SDS accelerates the reaction. Here, SDS is a catalyst for glyceraldehydes production and at the same time reduction of carcinogenic hexavalent chromium to nontoxic trivalent chromium. The reaction proceeds simultaneously in both aqueous and micellar phase. Micellar effects have been explained by considering the preferential partitioning of reactants between the micellar and aqueous phase. The Menger–Portnoy model, Piszkiewicz cooperative model, and pseudo-phase ion exchange model have been tested to explain the observed micellar effect.  相似文献   

12.
A simple spectrophotometric method applicable to waste water bodies is developed for the determination of anionic surfactant (AS). An ion‐association complex is formed between an anionic surfactant Sodium dodecyl sulphate (SDS) and a cationic dye Crystal Violet (CV). The dark blue colored complex can be easily extracted in organic solvent benzene. The absorbance of the complex in benzene layer is measured spectrophotometrically at maximum wave length (λ max) of 565 nm. Under the optimal experimental conditions, absorbance of the organic extractant obeyed Beer's law over the range of 0.75–10.00 μg mL?1 of SDS and the LOD was 0.01312 μg L?1. It is noticed that the present method is much easier, less time consuming and applicable to accelerated urbanization and industrial development found in newly formed Chhattisgarh state in Central India. The validity of the method was tested in regionalized industrial and domestic waste water runoff.  相似文献   

13.
The analytical properties of 5-chloro-, 5-bromo- and 5-methyl-2-thiophenealdehyde-2-benzothiazolylhydrazone (CTBH, BTBH and MTBH, respectively), are compared with those of 2-thiophenealdehyde-2-benzothiazolylhydrazone (TBH). The acid dissociation constants have been determined, and the 5-substituent effect is discussed. The complex formation of the reagents with several metal ions has been examined spectrophotometrically. Extraction—spectrophotometric determinations of traces of copper are proposed. The copper complexes can be extracted quantitatively into benzene over wide pH ranges (from weakly acidic to alkaline medium) and the molar absorptivities are high (4–5· 104 l mol-1 cm-1). The complexes formed are 1:2 (copper:ligand) in all cases. There are few interferences from common ions except silver(I), mercury(II), thiocyanate and citrate.  相似文献   

14.
The kinetics of oxidation of nitrite by [O = CrV (5‐chlorosalen)]+ complex has been studied spectrophotometrically at [CrV] = 0.5 × 10?3 M, [NO2?] = 0.01–0.1 M, [H+] = 0.0001–0.05 M, I = 0.15 M, and T = 25°C in the presence of cationic surfactant, cetyl pyridium chloride (CPC), and anionic surfactant, sodium dodecyl sulfate (SDS),in aqueous acidic medium. The oxygen atom transfer reaction from O = CrV to nitrite ion is influenced by the ionic nature of the micelle. The redox reaction is accelerated in presence of CPC and slowed down by 40 times in presence of SDS. The mechanism of the reaction involves an inner‐sphere process involving the formation of an intermediate followed by oxo transfer process. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 36: 79–86 2004  相似文献   

15.
A sensitive spectrophotometric method for the determination of copper(II) based on a ternary complex with chromal blue G, a triphenylmethane reagent in the presence of cetyltrimethylammonium chloride, is described. The sensitivity of color reaction between copper and chromal blue G has been greatly increased by the sensitizing action of cetyltrimethylammonium chloride, a cationic surfactant. The color development of the ternary complex can be utilized in the highly sensitive spectrophotometric determination of copper. The molar absorptivity of the binary complex between copper and chromal blue G ε630nm = 9.56 × 103liters · mol−1 · cm−1 is enchanced on ternary complex formation to ε542 nm = 4.78 × 104liters · mol−1 · cm−1. The ternary complex gave a maximal absorbance at 542 nm in the pH range 9.8–11. Beer's law is obeyed up to at least 1.2 ppm of copper. The maximal absorbance of the ternary complex was found to develop within 5 min and then it remains constant for several hours. The formation constant of the ternary complex is calculated to be 8.6 × 1010 under these conditions.  相似文献   

16.
《Analytical letters》2012,45(15):3097-3111
Abstract

The complex formation reaction between iron(III) and 4-(2-pyridylazo) resorcinol(PAR) in the presence of various water soluble surfactants((N-hexadecylpyridinium chloride (HPC), poly(vinylalcohol)(PVA), sodium dodecylsulfate(SDS), sodium N-lauroylsarcosine(SL)) alone or in combination at weakly acidic media was systematically investigated. An improved and more sensitive spectrophotometric method for the determination of iron was proposed by zero-order and third-derivative spectrophotometry using the PAR-iron(III)-HPC ternary complex system at about pH 5.2. The calibration curve was rectilinear in the ranges of 0 – 15.0 μg iron(III) in a final 10-ml on the zero-order spectrophotometry. Also, upon the third-derivative spectrophotometry, Beer's law was obeyed in the range of 0 – 8.0 μg iron(III)/10 ml by measuring the distance between the absorbance peak(λ1 = 527 nm) and the valley (λ2 = 560 nm). The apparent molar absorptivity was 4.8 × 104 1 mol?1 cm?1 in zero-order spectrophotometry, and 1.36 × 105 mol?1 cm?1 in third-derivative spectrophotometry. The effect of foreign ions was decreased within ½ – ¼-fold in comparison with the method in the presence of PVA without HPC. Especially, the third-derivative spectrophotometric method was sensitive and selective, and made possible to assay mixed sample solution containing iron(III) and copper(II), etc.  相似文献   

17.
《Analytical letters》2012,45(14):2708-2720
Abstract

A simple, sensitive, and direct spectrophotometric method has been developed for the assay of sparfloxacin in bulk and pharmaceutical preparations. The proposed method is based on the formation of ternary complex between an investigated drug, palladium(II) ion and eosin in the presence of methylcellulose as surfactant and acetate buffer of pH 4.2. Spectrophotometrically, under the optimum conditions, the ternary complex showed absorption maximum at 550 nm, with apparent molar absorptivity of 2.69×104 l mol?1 cm?1, Sandell's sensitivity of 0.01458 µg ml?1 and linearity in the concentration range 1.6–16 µg ml?1. The composition of the ternary complex was studied by Job's method of continuous variation and the result indicated that the molar ratio of SPFX: Pd: eosin is 1∶1∶1. The optimum reaction conditions and other analytical parameters are evaluated. The proposed method was successfully applied for the determination of SPFX in its pharmaceutical product with mean percentage recoveries of 99.71%. The observed data has been subjected to statistical analysis, which revealed high accuracy and precision.  相似文献   

18.
The kinetics and mechanism of the Cr(VI) oxidation of ethane-1,2-diol in the presence and absence of 2,2′-bipyridine (bipy) in aqueous acid media were studied under the conditions [ethane-1,2-diol]T ? [Cr(VI)]T. Under the kinetic conditions, monomeric Cr(VI) was found to be kinetically active in the absence of bipy, whereas in the bipy-catalyzed path the Cr(VI)-bipy complex was the active oxidant. In this path, the Cr(VI)-bipy complex undergoes nucleophilic attack by the substrate to form a ternary complex which subsequently undergoes redox decomposition (through 2e transfer) leading to hydroxyethanol and the Cr(IV)-bipy complex. The Cr(IV)-bipy complex then participates further in oxidation of organic substrate, ultimately converted into inert Cr(III)-bipy complex. The uncatalyzed path shows a second-order dependence on [H+], while the bipy-catalyzed path shows a first-order dependence on [H+]. Both the uncatalyzed and bipy-catalyzed paths show first-order dependence on [ethane-1,2-diol]T and on [Cr(VI)]T. The bipy-catalyzed path is first-order in [bipy]T. All these patterns remain unaltered in the presence of externally added surfactants. The effects of a cationic surfactant, N-cetylpyridinium chloride (CPC), and an anionic surfactant, sodium dodecyl sulfate (SDS), on both the uncatalyzed and bipy-catalyzed paths were studied. CPC inhibits both the uncatalyzed and bipy-catalyzed paths, whereas SDS catalyzes the reactions. The observed micellar effects are explained by considering a distribution pattern of the reactants between the micellar and aqueous phases.  相似文献   

19.
The kinetics and mechanism of picolinic acid (PA) catalyzed oxidation of dimethyl sulfoxide (DMSO) to dimethyl sulfone by chromium(VI) in both aqueous H2SO4 and HClO4 media have been studied in the absence and presence of surfactants at different temperatures. Cr(VI)–PA complex formed in preequilibrium steps is the active oxidant that experiences the nucleophilic attack by DMSO to form a positively charged intermediate ternary complex. Within the proposed ternary complex, an oxygen transfer or a ligand coupling or both occurs to generate the product, dimethyl sulfone. Cr(VI) is ultimately converted to Cr(III)–PA complex. Under the experimental conditions, the process shows a first‐order dependence on each of the reactants (i.e., [Cr(VI)]T, [PA]T, [DMSO]T, and [H+]). HCrO4 has been found kinetically active. The reaction is catalyzed by sodium dodecyl sulfate (SDS, a representative anionic surfactant) monotonically, while cetylpyridinium chloride (CPC, a representative cationic surfactant) retards the reaction continuously. The observed micellar effects have been explained by considering the hydrophobic and electrostatic interaction between the surfactants and reactants. A pseudo‐phase ion exchange (PIE) model has been applied to explain the micellar effect. The Piszkiewicz cooperative model has been applied to determine the kinetic parameters, and it indicates the existence of catalytically productive submicellar aggregates. Because of this reactant‐promoted micellization of the surfactant before or below the cmc value, the present systems do not show any discontinuity at the respective reported cmc values of the surfactants. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 173–181, 2001  相似文献   

20.
《Analytical letters》2012,45(3):441-448
Abstract

An optical sensing membrane for detection of cationic surfactants was developed. The optical sensing membrane is 2‐nitrophenyl octyl ether‐plasticized poly(vinyl chloride) membrane incorporating tetrabromophenolphthalein ethyl ester (TBPE). The response of the optical membrane to cationic surfactants was a result of extraction of cationic surfactant into the PVC membrane. The protonated TBPE deprotonates forming an ion associate with the extracted cationic surfactant; simultaneously, the deprotonation of the TBPE is accompanied by a spectral change. Namely, the extracted cationic surfactant changes color of the membrane from yellowish green to blue (absorption maximum: 622 nm). The optical membrane responds to cationic surfactants such as Zephiramine and cetyltrimethylammonium bromide in the concentration range from 1 µM to 100 µM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号