首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
A molecularly imprinted polymer (MIP) with metolachlor as template was firstly coated on stainless steel fiber through chemical bonding strategy to solve the fragility problem of silica fiber substrate for solid-phase microextraction. The surface pretreatment of stainless steel fiber and the polymerization conditions were investigated systematically to enhance the preparation feasibility and MIP coating performance, and then a porous and highly cross-linked MIP coating with 14.8-μm thickness was obtained with over 200 times re-usability which was supported by non-fragile stainless steel fiber adoption. The MIP coating possessed specific selectivities to metolachlor, its metabolites and other chloroacetanilide herbicides with the factors of 1.1–4.6. Good extraction capacities of metolachlor, propisochlor and butachlor were found with MIP coating under quick adsorption and desorption kinetics, and the detection limits of 3.0, 9.6 and 38 μg L−1 were achieved, respectively. Moreover, the MIP-coated stainless steel fiber was evaluated for trace metolachlor, propisochlor and butachlor extraction in the spiked soybean and corn samples, and the enrichment factors of 54–60, 27–31 and 15–20 were obtained, respectively.  相似文献   

2.
In this research, a novel strategy was developed to prepare molecularly imprinted polymer (MIP) coated solid-phase microextraction fibers on a large scale with Sudan I as template and stainless steel fibers as substrate. More than 20 fibers could be obtained in one glass tube, and the efficiency and coating repeatability were enhanced remarkably in contrast with the yield of only one fiber in our previous works. The obtained MIP-coated stainless steel fibers were characterized by homogeneous and highly cross-linked coating, good chemical and thermal stabilities, high extraction capacities, and specific selectivities to Sudan I–IV dyes. Based on the systemic optimization of extraction conditions, a simple and cost-effective method based on the coupling of MIP-coated SPME with high-performance liquid chromatography was developed for the fast and selective determination of trace Sudan I–IV dyes in hot chili powder and poultry feed samples. The limits of detection of Sudan I–IV dyes were within 2.5–4.6 ng g?1, and the spiked recoveries were in the range of 86.3–96.3% for hot chili powder sample and 84.6–97.4% for poultry feed sample.  相似文献   

3.
In this work, zinc oxide/polypyrrole nanocomposite coating was fabricated on stainless steel and evaluated as a novel headspace solid‐phase microextraction fiber coating for extraction of ultra‐trace amounts of environmental pollutants, namely, phthalate esters, in water samples. The fiber nanocomposite were prepared by a two‐step process including the electrochemical deposition of polypyrrole on the surface of stainless steel in the first step, and electrochemical deposition of zinc oxide nanosheets in the second step. Porous structure together with zinc oxide nanosheets with the average diameter of 30 nm were observed on the surface by using scanning electron microscopy. The effective parameters on extraction of phthalate esters (i.e., extraction temperature, extraction time, desorption temperature, desorption time, salt concentration, and stirring rate) were investigated and optimized by one‐variable‐at‐a‐time method. Under optimized conditions (extraction temperature, 90°C; extraction time, 40 min; desorption temperature, 270°C; desorption time, 5 min; salt concentration, 25% w/v; and stirring rate, 1000 rpm), the limits of detection were in the range of 0.05–0.8 μg/L, and the repeatability and fiber‐to‐fiber reproducibility were in the ranges of 6.1–7.3% and 8.7–10.2%, respectively.  相似文献   

4.
A kind of new temperature sensitive molecularly imprinted polymer (MIP) with ofloxacin (OFL) as template was prepared for the coating of solid phase microextraction (SPME). Dopamine was self-polymerized on stainless steel fiber (SSF) as the SPME support followed by silanization. Then MIP was synthesized as SPME coating on the modified SSF in a capillary, with N-isopropyl acrylamide as temperature sensitive monomer and methacrylic acid as functional monomer. The synthesis could be well repeated with multiple capillaries putting in the same reaction solution. The obtained MIP fiber was evaluated in detail with different techniques and various adsorption experiments. At last the MIP fiber was used to extract the OFL in milk. Satisfied recoveries between 89.7 and 103.4% were obtained with the limit of quantification (LOQLC) of 0.04 μg mL−1 by the method of SPME coupled with high performance of liquid chromatography (HPLC).  相似文献   

5.
A novel graphene oxide decorated with silver nanoparticles coating on a stainless‐steel fiber for solid‐phase microextraction was prepared. Scanning electron microscopy and X‐ray photoelectron spectroscopy were used to characterize the coating surface and showed that silver nanoparticles were dispersed on the wrinkled graphene oxide surface. Coupled to gas chromatography with flame ionization detection, the extraction abilities of the fiber for polycyclic aromatic hydrocarbons were examined in the headspace solid‐phase microextraction mode. The extraction parameters including adsorption time, adsorption temperature, salt concentration, desorption time and desorption temperature were investigated. Under the optimized condition, wide linearity with low limits of detection from 2 to 10 ng/L was obtained. The relative standard deviations for single‐fiber repeatability and fiber‐to‐fiber reproducibility were less than 10.6 and 17.5%, respectively. The enrichment factors were from 1712.5 to 4503.7, showing the fiber has good extraction abilities. Moreover, the fiber exhibited a good stability and could be reused for more than 120 times. The established method was also applied for determination of polycyclic aromatic hydrocarbons in two real water samples and the recoveries of analytes ranged from 84.4–116.3% with relative standard deviations less than 16.2%.  相似文献   

6.
A novel organic–inorganic composite-coated fiber was developed for selective solid-phase microextraction (SPME) by direct electrodeposition of zinc oxide microparticles on a pretreated stainless steel wire followed by self-assembly of hydroxyundecanethiol with zinc–sulfur bonds. The performance of the hydroxyundecyl-modified zinc oxide-coated steel fiber was then assessed for SPME of polar aromatic compounds coupled to high-performance liquid chromatography with ultraviolet detection. Excellent extraction and selectivity were obtained for polycyclic aromatic hydrocarbons. The extraction and desorption times, temperature, stirring rate, and ionic strength were optimized. The limits of detection were from 0.034 to 0.132?µg?L?1. The relative standard deviations were from 3.4 to 4.9% for a single fiber and from 5.1 to 6.4% for multiple fibers. The recovery of polycyclic aromatic hydrocarbons in environmental water fortified at 5.0 and 50?µg?L?1 was from 83.1 to 103% with relative standard deviations below 8.4%. This fiber was shown to withstand at least 200 extraction and desorption cycles. The method was used for the preconcentration and determination of polycyclic aromatic hydrocarbons in environmental water.  相似文献   

7.
Modified stainless‐steel wires with a layer of polyaniline conductive polymer were coated by electrochemical deposition with Zn/Al layered double hydroxide to make solid‐phase microextraction fibers. The coating layer was also electrochemically deposited on the inner surface of a stainless‐steel tube. Then, ten prepared fibers were put inside the inner coated tube to make a fiber‐in‐tube solid phase microextraction device. The device was applied for the extraction of caffeine (1,3,7‐trimethylxanthine) from domestic wastewater samples. Extraction conditions including extraction and desorption times, pH and ionic strength of the sample solution, and content of the organic desorption solvent were investigated and optimized. Under the optimized conditions, the fiber‐in‐tube solid phase microextraction exhibited excellent extraction efficiency toward caffeine. The precision of the method was evaluated. Average relative standard deviation of 5.7% (n = 6) for intraday analysis and 8.3% (n = 5) for interday analysis was obtained. The limits of detection and limits of quantification of the method (at signal to noise ratio of 3 and 10) were obtained as 0.14 and 0.37 ng/mL, respectively. The current study can provide new prospective applications of layered double hydroxide conductive polymer fiber coatings.  相似文献   

8.
A high-temperature-resistant solid-phase microextraction (SPME) fiber was prepared based on polyetherimide (PEI) by the electrospinning method. The PEI polymeric solution was converted to nanofibers using high voltages and directly coated on a stainless steel SPME needle. The scanning electron microscopy images of PEI coating showed fibers with diameter range of 500–650 nm with a homogeneous and smooth surface morphology. The SPME nanofibers coating was optimized for PEI percentage, electrospinning voltage, and time. The extraction efficiency of the coating was investigated for headspace SPME of some environmentally important polycyclic aromatic hydrocarbons from aqueous samples followed by gas chromatography–mass spectrometry measurement. In addition, the important extraction parameters including extraction temperature, extraction time, ionic strength, as well as desorption temperature and time were investigated and optimized. The detection limits of the method under optimized conditions ranged from 1 to 5 ng L?1 using time-scheduled selected ion monitoring mode. The relative standard deviations of the method were between 1.1 and 7.1 %, at a concentration level of 500 ng L?1. The calibration curves of polycyclic aromatic hydrocarbons showed linearity in the range of 5–1000 ng L?1. The developed method was successfully applied to real water samples and the relative recovery percentages obtained from the spiked water samples were from 84 to 98 % for all the selected analytes except for acenaphthene which was from 75 to 106 %.  相似文献   

9.
《Analytical letters》2012,45(16):2477-2486
A novel solid-phase microextraction (SPME) fiber was prepared by coating multiwalled carbon nanotube (MWCNTs) on a stainless steel wire, and its characteristics were studied. To evaluate the MWCNTs coating, the fiber was used for the extraction of some organochlorine pesticides (OCPs) from water samples by Headspace SPME (HS-SPME) mode. Potential factors affecting the extraction efficiency such as extraction time, extraction temperature, agitation, ionic strength, desorption temperature, and time were also optimized. Several experiments were carried out by water spiked with target compounds to evaluate the analytical characteristics of the proposed method under optimized conditions. The linearity was from 0.1 to 10 ug/L with the linear correlation coefficients (r) ranging from 0.9956 to 0.9995. The limits of detection (LOD, S/N = 3) for these pesticides were between 0.43 and 2.13 ng/L and the precision (RSD, n = 5) was 2.53–12.25%. When this method was applied for the spiked real river sample, the relative recoveries ranged from 72.4% to 134.7% for the tested OCPs.  相似文献   

10.

An inside-needle extraction method was developed through thermal polymerization of atrazine-molecularly imprinted polymer (MIP) on the internal surface of a stainless steel hollow needle, which was oxidized and silylated. The fabricated coating (MIP layer) for the needle was durable and showed very good chemical and thermal stability. It could be mounted on a glass syringe and be directly coupled with gas chromatographic (GC) systems. The parameters being effective on the coating and extraction processes, namely nature of oxidizing agent, silylation time, nature and amount of porogen, template-to-MIP components ratio, polymerization time and temperature, sample volume, flow rate, pH and ionic strength of the sample were investigated and optimized. The extraction needle showed high selectivity as well as a great extraction capacity for triazines. The extraction of atrazine, simazine, cyanazine, ametryn, prometryn and terbutryn using the fabricated extraction needle and followed by GC analysis resulted in detection limits of 2.6, 21, 24, 32, 38 and 42 ng mL−1, respectively. The fabricated needle proved to be applicable to the analysis of real samples by comparing the results obtained for non-spiked and spiked samples of grape juice, tap water and groundwater.

  相似文献   

11.
A functional stainless steel microextraction fiber easily prepared by in situ growing metal–organic framework UiO‐66 was presented and used for high‐performance analysis of polycyclic musks. Via the robust Ag‐SH bonding reaction, mercaptoacetic acid was easily anchored on Ag film to provide carboxyl group on the stainless steel fiber, then in situ grown UiO‐66 was fulfilled via the coordination reaction between Zr4+ and carboxyl group. Good characteristics including large surface area, high thermal stability, and good adsorption property were achieved. Sensitive detection limits (0.015–0.040 ng/L) were achieved for polycyclic musks by coupling with gas chromatography with mass spectrometry, and it could be stable enough for 150 extraction cycles without a significant loss of extraction efficiency. Compared with the classical commercial fibers, 2.2–11.4 times higher enhancement factors were shown. Applied to the analysis of fortified river water samples, five typical polycyclic musks were well detected with the recoveries of 90.2–101.8%, respectively. It showed a facile approach for preparing stainless steel microextraction fiber via chemically bonding in situ grown metal–organic framework for high‐performance enrichment.  相似文献   

12.
We developed a solid‐phase microextraction coupled to GC with electron‐capture detection method for the detection of acrylamide in food samples. Single‐walled carbon nanotubes and polypyrrole were electropolymerized onto a stainless‐steel wire as a coating, which possessed a homogeneous, porous, and wrinkled surface, chemical and mechanical stability, long lifespan (over 300 extractions), and good extraction efficiency for acrylamide. The linearity range between the signal intensity and the acrylamide concentration was found to be in the range 0.001–1 μg/mL, and the coefficient of determination was 0.9985. The LOD, defined as three times the baseline noise, was 0.26 ng/mL. The reproducibility for each single fiber (n = 6) and the fiber‐to‐fiber (n = 5) repeatability prepared in the same batch were less than 4.1 and 11.2%, respectively.  相似文献   

13.
In this study, a new covalent organic framework, consisting of tetra(4‐aminophenyl)porphyrin and tris(4‐formyl phenyl)amine, was layer‐by‐layer immobilized on stainless‐steel wire as a coating for microextraction. The fabrication process was easy and controllable under mild conditions. The as‐grown fiber was applied to extract polycyclic aromatic hydrocarbons in aqueous solution via head‐space solid‐phase microextraction. Furthermore, it was analyzed by gas chromatography with a flame ionization detector. A wide linear range (0.1–50 µg/L), low limits of detection (0.006–0.024 µg/L, signal‐to‐noise ratio = 3), good repeatability (intra‐fiber, n = 6, 3.1–8.50%), and reproducibility (fiber to fiber; n = 3, 5.79–9.98%), expressed as relative standard deviations, demonstrate the applicability of the newly developed coating. This new material was successfully utilized in real sample extraction with a satisfactory result. Potential parameters affecting the extraction efficiency, including extraction temperature and extraction time, salt concentration, agitation speed, sample volume, desorption temperature, and time, were also optimized and discussed.  相似文献   

14.
A novel palladium solid‐phase microextraction coating was fabricated on a stainless‐steel wire by a simple in situ oxidation–reduction process. The palladium coating exhibited a rough microscaled surface and its thickness was about 2 μm. Preparation conditions (reaction time and concentration of palladium chloride and hydrochloric acid) were optimized in detail to achieve sufficient extraction efficiency. Extraction properties of the fiber were investigated by direct immersion solid‐phase microextraction of several polycyclic aromatic hydrocarbons and phthalate esters in aqueous samples. The extracted analytes were transferred into a gas chromatography system by thermal desorption. The effect of extraction and desorption conditions on extraction efficiency were investigated. Under the optimum conditions, good linearity was obtained and correlation coefficients between 0.9908 and 0.9990 were obtained. Limits of detection were 0.05–0.10 μg/L for polycyclic aromatic hydrocarbons and 0.3 μg/L for phthalate esters. Their recoveries for real aqueous samples were in the range from 97.1 to 121% and from 89.1 to 108%, respectively. The intra‐ and interday tests were also investigated with three different addition levels, and satisfactory results were also obtained.  相似文献   

15.
A sol–gel coating technique was applied for the preparation of a solid‐phase microextraction fiber by coating the metal–organic framework UiO‐67 onto a stainless‐steel wire. The prepared fiber was explored for the headspace solid‐phase microextraction of five nitrobenzene compounds from water samples before gas chromatography with mass spectrometric detection. The effects of the extraction temperature, extraction time, sample solution volume, salt addition, and desorption conditions on the extraction efficiency were optimized. Under the optimal conditions, the linearity was observed in the range of 0.015–12.0 μg/L for the compounds in water samples, with the correlation coefficients (r) of 0.9945–0.9987. The limits of detection of the method were 5.0–10.0 ng/L, and the recoveries of the analytes from spiked water samples for the method were in the range of 74.0–102.0%. The precision for the measurements, expressed as the relative standard deviation, was less than 11.9%.  相似文献   

16.
A novel nanocomposite coating of poly(o‐toluidine) and oxidized multiwalled CNTs (MWCNTs, where CNTs is carbon nanotubes) was electrochemically prepared on a stainless‐steel wire. The applicability of the fiber was assessed for the headspace solid‐phase microextraction of benzene, toluene, ethylbenzene, and xylenes in aqueous samples followed by GC with flame ionization detection. In order to obtain an adherent and stable composite coating, several experimental parameters related to the coating process, such as polymerization potential and time, and the concentration of o‐toluidine and oxidized MWCNTs were optimized. The combination of MWCNTs and polymer in a nanocomposite form presents desirable opportunities to produce materials for new applications. The effects of various parameters on the efficiency of the headspace solid‐phase microextraction process, such as desorption temperature and time, extraction temperature and time, and ionic strength were also investigated. At the optimum conditions, LODs were 0.03–0.06 μg/L. The method showed linearity in the range of 0.5–300 μg/L with coefficients of determination >0.99. The intraday and interday RSDs obtained at a 5 μg/L concentration level (n = 5) using a single fiber were 1.2–5.2 and 3.2–7.5%, respectively. The fiber‐to‐fiber RSD (%; n = 3) at 5 μg/L was 6.1–9.2%.  相似文献   

17.
We describe the synthesis of a layered zinc hydroxide‐dodecyl sulfate organic–inorganic hybrid nanocomposite as a new solid‐phase microextraction fiber. The fiber coating can be prepared easily in a short time and the reaction is at room temperature; it is mechanically stable and exhibits relatively high thermal stability. The synthesized layered zinc hydroxide‐dodecyl sulfate nanocomposite was successfully prepared and immobilized on a stainless steel wire and evaluated for the extraction of aromatic compounds from aqueous sample solutions in combination with gas chromatography and mass spectrometry. The method yields good results for some validation parameters. Under optimum conditions (extraction time: 15 min, extraction temperature: 50°C, desorption time: 1 min, desorption temperature: 250°C, salt concentration: 0.5 g/mL), the limit of detection and dynamic linear range were 0.69–3.2 ng/L and 10–500 ng/L, respectively. The method was applied to the analyses of benzene, toluene, ethylbenzene, and o‐, p‐, and m‐xylenes in two real water samples collected from the Aji river and Mehran river, Tabriz, Iran. Under optimum conditions, the repeatability and reproducibility for one fiber (n = 3), expressed as the relative standard deviation, was 3.2–7.3% and 4.2–11.2% respectively. The fibers are thermally stable and yield better recoveries than conventional methods of analysis.  相似文献   

18.
In this study, a novel ‘fiber‐in‐tube’ configuration was applied to electrochemically controlled fiber‐in‐tube solid‐phase microextraction of antipsychotic drugs (perphenazine and chlorpromazine) from biological samples. To prepare an electrochemically controlled fiber‐in‐tube solid‐phase microextraction column, first eight stainless‐steel wires were placed into the stainless‐steel column. Then, a nanostructured Cu‐Cr‐Al ternary layered double hydroxide/polythiophene coating was prepared on the inner surface of the stainless‐steel tube and on the surfaces of the stainless‐steel wires by a facile in situ electrodeposition method. The nanostructured coating exhibited enhanced long lifetime, good mechanical stability, high porosity, and large specific surface area compared with polythiophene and Cu‐Cr‐Al layered double hydroxide coatings. Under the optimal conditions, the limits of detection were in the range of 0.07–0.8 μg/L. This method showed good linearity for perphenazine and chlorpromazine in the ranges of 0.3–300 and 0.2–300 μg/L, respectively, with coefficients of determination more than 0.9982. The inter‐ and intra‐assay precisions (RSD%, n = 3) were in the ranges of 3.0–5.1 and 2.5–4.5% at three concentration levels of 5, 25 and 50 μg/L, respectively. Finally, the method was applied for the analysis of the drugs in human urine and plasma samples.  相似文献   

19.
To prevent the stripping of coating sorbents in headspace solid‐phase microextraction, a porous extraction probe with packed sorbent was introduced by using a porous stainless steel needle tube and homemade sol–gel sorbents. The traditional stainless‐steel needle tube was punched by a laser to obtain two rows of holes, which supply a passageway for analyte vapor during extraction and desorption. The sorbent was prepared by a traditional sol–gel method with both poly(ethylene glycol) and hydroxy‐terminated silicone oil as coating ingredients. Eight polycyclic aromatic hydrocarbons and six benzene series compounds were used as illustrative semi‐volatile and volatile organic compounds in sequence to verify the extraction performance of this porous headspace solid‐phase microextraction probe. It was found that the analysis method combining a headspace solid‐phase microextraction probe and gas chromatography with mass spectrometry yielded determination coefficients of no less than 0.985 and relative standard deviations of 4.3–12.4%. The porous headspace solid‐phase microextraction probe showed no decrease of extraction ability after 200 uses. These results demonstrate that the packed extraction probe with porous structure can be used for headspace solid‐phase microextraction. This novel design may overcome both the stripping and breakage problems of the conventional coating fiber.  相似文献   

20.
A polymeric ionic liquid modified stainless steel wire for solid‐phase microextraction was reported. Mercaptopropyl‐functionalized stainless steel wire that was formed by co‐condensation of tetramethoxysilane and 3‐mercaptopropyltrimethoxysilane via a sol‐gel process, which is followed by in situ surface radical chain‐transfer polymerization of 1‐vinyl‐3‐octylimidazolium hexafluorophosphate to result in polymeric ionic liquid modified stainless steel wire. The fiber surface was characterized by field emission scanning electron microscope equipped with energy dispersive X‐ray analysis. Coupled with GC, extraction performance of the fiber was tested with phenols and polycyclic aromatic hydrocarbons as model analytes. Effects of extraction and desorption conditions were investigated systematically in our work. RSDs for single‐fiber repeatability and fiber‐to‐fiber reproducibility were less than 7.34 and 16.82%, respectively. The calibration curves were linear in a wide range for all analytes and the detection limits were in the range of 10–60 ng L?1. Two real water samples from the Yellow River and local waterworks were applied to test the as‐established solid‐phase microextraction–GC method with the recoveries of samples spiked at 10 μg L?1 ranged from 83.35 to 119.24%. The fiber not only exhibited excellent extraction efficiency, but also very good rigidity, stability and durability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号