首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
On moving heat sources   总被引:1,自引:0,他引:1  
The two-dimensional thermal problem due to relative motion of a medium and a suddenly activated circular heat source is solved for several boundary conditions. The solutions can be interpreted as for a moving heat source in a stationary medium or a medium moving past a stationary heat source. Uniform and non-uniform temperature, and uniform and non-uniform heat flux boundary conditions are considered. The effect of velocity and radial direction on the temperature distribution is examined. Average, steady-state Nusselt numbers are derived. The transient response of a continuous line source is obtained as a limiting case of the prescribed heat flux solution. Received on 24 September 1996  相似文献   

2.
The problem of viscous dissipation and thermal dispersion in saturated porous medium is numerically investigated for the case of non-Darcy flow regime. The fluid is induced to flow upward by natural convection as a result of a semi-infinite vertical wall that is immersed in the porous medium and is kept at constant higher temperature. The boundary layer approximations were used to simplify the set of the governing, nonlinear partial differential equations, which were then non-dimensionalized and solved using the finite elements method. The results for the details of the governing parameters are presented and investigated. It is found that the irreversible process of transforming the kinetic energy of the moving fluid to heat energy via the viscosity of the moving fluid (i.e., viscous dissipation) resulted in insignificant generation of heat for the range of parameters considered in this study. On the other hand, thermal dispersion has shown to disperse heat energy normal to the wall more effectively compared with the normal diffusion mechanism.  相似文献   

3.
The penetration of particles suspended in a liquid into a porous medium is studied. The problem describing changes in the properties of the medium in the neighborhood of a moving boundary is formulated. A solution method is proposed, and flow features are investigated. The structure of the region of significant changes in the properties of the medium and flow depends significantly on the rate of displacement of the moving boundary  相似文献   

4.
二阶非定常多宗量热传导反问题的正则解   总被引:1,自引:0,他引:1  
薛齐文  杨海天 《力学学报》2007,39(6):774-780
引入Bregman距离函数及其加权函数作为正则项,应用Tikhonov正则 化方法,对二阶非定常多宗量热传导反问题进行求解. 利用测量信息和计算信息构造最小二 乘函数,将多宗量反演识别问题转化为一个优化问题. 空间上采用8节点等参元进行离散, 时域上采用时域精细算法进行离散,建立了二阶非定常多宗量热传导问题的有限元正/反演数 值模型. 该模型不仅考虑了非均质和参数分布的影响,而且也便于正反演问题的敏度分析, 可对导热系数和边界条件等宗量进行有效的单一和组合识别. 给出了相关的数值验证,对信 息测量误差以及不同正则项的计算效率作了探讨. 数值结果表明,该方法能够对二阶非定常 多宗量热传导反问题进行有效的求解,并具有较高的计算精度.  相似文献   

5.
A conjugate problem of nonstationary radiative-convective heat transfer in a turbulent flow of a mixture of gases with solid particles around a horizontal evaporating semitransparent melt film is numerically solved. The moving film is subjected to intense radiative heating by an external source whose radiation interacts with the gas-particle medium and the film in a bounded spectral range. The temperature fields and velocities in the boundary layer and the film are calculated. The computational results given allow determination of the impact of radiation on heat transfer and film dynamics in the boundary layer-film system.  相似文献   

6.
The present paper discusses the problem of composite heat transfer and viscous friction of a moving gray medium with large optical density. Expressions for temperature and velocity distributions and the ratio of the radiative component to convective component of heat flux are obtained. It is observed that for a given value ofB the ratio of radiative heat flux to convective heat flux is maximum at the edge of the boundary layer and tends to an asymptotic value as the boundary is reached. However, for a given value ofK δ, the ratio of heat fluxes increases with increase inB (the porous parameter). The results also show that as the wall temperature approaches the value of free stream temperature, the ratio of heat fluxes decreases.  相似文献   

7.
We consider a three-dimensional problem on the interaction of harmonic waves with a thin rigid movable inclusion in an infinite elastic body. The problem is reduced to solving a system of two-dimensional boundary integral equations of Helmholtz potential type for the stress jump functions on the opposite surfaces of the inclusion. We propose a boundary element method for solving the integral equations on the basis of the regularization of their weakly singular kernels. Using the asymptotic relations between the amplitude-frequency characteristics of the wave farzone field and the obtained boundary stress jump functions, we determine the amplitudes of the shear plane wave scattering by a circular disk-shaped inclusion for various directions of the wave incident on the inclusion and for a broad range of wave numbers.  相似文献   

8.
The paper outlines a procedure to identify the space-and time-dependent external nonstationary load acting on a closed circular cylindrical shell of medium thickness. Time-dependent deflections at several points of the shell are used as input data to solve the inverse problem. Examples of numerical identification of various nonstationary loads, including moving ones are presented. The relationship between the external load and the stress-strain state of the shell is described by the Volterra equation of the first kind. The identification problem is solved using Tikhonov's regularization method and Apartsin's h-regularization method __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 7, pp. 91–100, July 2008.  相似文献   

9.
In this paper, we have studied the effects of radiation on the boundary layer flow and heat transfer of an electrically conducting micropolar fluid over a continuously moving stretching surface embedded in a non-Darcian porous medium with a uniform magnetic field has been analyzed analytically. The governing fundamental equations are approximated by a system of nonlinear locally similar ordinary differential equations which are solved analytically by applying homotopy analysis method (HAM). The effects of Darcy number, heat generation parameter and inertia coefficient parameter are determined on the flow. Convergence of the obtained series solution is discussed. The homotopy analysis method provides us with a new way to obtain series solutions of such problems. This method contains the auxiliary parameter which provides us with a simple way to adjust and control the convergence region of series solution. By suitable choice of the auxiliary parameter, we can obtain reasonable solutions for large modulus.  相似文献   

10.
In this paper we consider an inverse scattering problem from an open arc with impedance boundary conditions on both sides of the crack. Our aim is to recover both the impedance function and the unknown crack simultaneously from the far-field pattern with only one incident wave. Making the most out of the direct problem, a straightforward method of iterative nature is developed for the inverse problem. The ill-posedness of this problem is considered by incorporating the Tikhonov regularization. Numerical examples are provided at the end of the paper to show the feasibility of our method.  相似文献   

11.
A scalar contact problem with friction is formulated as a boundary variational inequality of the second kind. The presence of the non-differentiable friction functional causes difficulties when approximating it. We present two approaches to overcome these difficulties: A regularization procedure leading to a non-linear boundary variational equation, for which we propose an iterative process and the second one is a boundary mixed variational formulation involving Lagrange multiplier. We reformulate our problem in terms of a saddle point problem for the corresponding boundary Lagrangian and describe Uzawa's algorithm to compute it.  相似文献   

12.
The application of the method of fundamental solutions to the Cauchy problem for steady-state heat conduction in two-dimensional functionally graded materials (FGMs) is investigated. The resulting system of linear algebraic equations is ill-conditioned and, therefore, regularization is required in order to solve this system of equations in a stable manner. This is achieved by employing the zeroth-order Tikhonov functional, while the choice of the regularization parameter is based on the L-curve method. Numerical results are presented for both smooth and piecewise smooth geometries. The convergence and the stability of the method with respect to increasing the number of source points and the distance between the source points and the boundary of the solution domain, and decreasing the amount of noise added into the input data, respectively, are analysed.  相似文献   

13.
The problem of the dynamic response of a fully saturated poroelastic soil stratum on bedrock subjected to a moving load is studied by using the theory of Mei and Foda under conditions of plane strain. The applied load is considered to be the sum of a large number of harmonics with varying frequency in the form of a Fourier expansion. The method of solution considers the total field to be approximated by the superposition of an elastodynamic problem with modified elastic constants and mass density for the whole domain and a diffusion problem for the pore fluid pressure confined to a boundary layer near the free surface of the medium. Both problems are solved analytically in the frequency domain. The effects of the shear modulus, permeability and porosity of the soil medium and the velocity of the moving load on the dynamic response of the soil layer are numerically evaluated and compared with those obtained by the exact solution of the problem. It is concluded that for fine poroelastic materials, the accuracy of the present method against the exact one is excellent.  相似文献   

14.
Bridge weigh-in-motion systems are based on the measurement of strain on a bridge and the use of the measurements to estimate the static weights of passing traffic loads. Traditionally, commercial systems employ a static algorithm and use the bridge influence line to infer static axle weights. This paper describes the experimental testing of an algorithm based on moving force identification theory. In this approach the bridge is dynamically modeled using the finite element method and an eigenvalue reduction technique is employed to reduce the dimension of the system. The inverse problem of finding the applied forces from measured responses is then formulated as a least squares problem with Tikhonov regularization. The optimal regularization parameter is solved using the L-curve method. Finally, the static axle loads, impact factors and truck frequencies are obtained from a complete time history of the identified moving forces.  相似文献   

15.
We study the reconstruction of the missing thermal and mechanical fields on an inaccessible part of the boundary for two-dimensional linear isotropic thermoelastic materials from over-prescribed noisy (Cauchy) data on the remaining accessible boundary. This problem is solved with the method of fundamental solutions (MFS) together with the method of particular solutions (MPS) via the MFS-based particular solution for two-dimensional problems in uncoupled thermoelasticity developed in Marin and Karageorghis, 2012a, Marin and Karageorghis, 2013. The stabilisation/regularization of this inverse problem is achieved by using the Tikhonov regularization method (Tikhonov and Arsenin, 1986), whilst the optimal value of the regularization parameter is selected by employing Hansen’s L-curve method (Hansen, 1998).  相似文献   

16.
The steady laminar boundary layer flow and heat transfer from a warm, laminar liquid flow to a melting surface moving parallel to a constant free stream is studied in this paper. The continuity, momentum and energy equations, which are coupled nonlinear partial differential equations are reduced to a set of two nonlinear ordinary differential equations, before being solved numerically using the Runge–Kutta–Fehlberg method. Results for the skin friction coefficient, local Nusselt number, velocity profiles as well as temperature profiles are presented for different values of the governing parameters. Effects of the melting parameter, moving parameter and Prandtl number on the flow and heat transfer characteristics are thoroughly examined. It is found that the problem admits dual solutions.  相似文献   

17.
The 3-D boundary integral equation is derived in terms of the reciprocal work theorem and used along with the 2.5-D Green’s function developed in Part I [Lu, J.F., Jeng, D.S., Williams, S., submitted for publication. A 2.5-D dynamic model for a saturated porous medium: Part I. Green’s function. Int. J. Solids Struct.] to develop the 2.5-D boundary integral equation for a saturated porous medium. The 2.5-D boundary integral equations for the wave scattering problem and the moving load problem are established. The Cauchy type singularity of the 2.5-D boundary integral equation is eliminated through introduction of an auxiliary problem and the treatment of the weakly singular kernel is also addressed. Discretisation of the 2.5-D boundary integral equation is achieved using boundary iso-parametric elements. The discrete wavenumber domain solution is obtained via the 2.5-D boundary element method, and the space domain solution is recovered using the inverse Fourier transform. To validate the new methodology, numerical results of this paper are compared with those obtained using an analytical approach; also, some numerical results and corresponding analysis are presented.  相似文献   

18.
The characteristics of the boundary layer flow past a plane surface adjacent to a saturated Darcy–Brinkman porous medium are investigated in this paper. The flow is driven by an external free stream moving with constant velocity. The surface is heated with a convective boundary condition with constant heat transfer coefficient. The problem is non-similar and is investigated numerically by a finite difference method. The problem is governed by four non-dimensional parameters, that is, the convective Darcy number, the convective Grashof number, the Prandtl number, and the axial distance along the plate. The influence of these parameters on the results is investigated, and the results are presented in tables and figures. The Darcy term and the Grashof term in the momentum equation contradict each other and this contradiction makes the problem complicated. However, the wall shear stress and the wall temperature increase continuously along the plate and the wall temperature always tends to 1.  相似文献   

19.
A numerical solution is presented for a nonlinear, one-dimensional boundary-value problem of thermoelasticity with variable volume force and heat supply in a half-space. The surface of the body is subjected to a given periodic displacement. The volume force and bulk heating simulate the effect of a beam of particles infiltrating the medium. No phase transition is considered and the domain of the solution excludes any shock wave formation. The basic equations are formulated in material coordinates, making them adequate for dealing with moving boundaries. The used numerical scheme reproduces correctly the process of coupled thermomechanical wave propagation. The presented figures display the process of propagation of the coupled nonlinear thermoelastic waves. They also show the effects of volume force and heat supply on the distributions of the mechanical displacements and temperature inside the medium. Moreover, the interplay between these two factors and the applied boundary disturbance is outlined. The presented solutions, however, is not meant to capture the expected process of shock formation at the breaking distance.  相似文献   

20.
Riccardo Fazio 《Wave Motion》1992,16(4):299-305
In this paper we present some results obtained by studying the mathematical model describing a moving boundary hyperbolic problem related to a time dependent stress impact in a bar of Maxwell-like material. Due to the impact a shock front propagates with a finite speed. Here our interest is to underline the influence of the dissipative term on the propagation of the shock front.

In the framework of the similarity analysis we are able to reduce the moving boundary hyperbolic problem to a free boundary value problem for an ordinary differential system. It is then possible, by applying two numerical transformation methods, to solve the free boundary value problem numerically. The influence of the dissipative term is evident: the free boundary (that defines the shock front propagation) is an increasing function of the dissipative coefficient.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号