首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The system of charge controlled self-assembled quantum dots coupled to high-Q photonic crystal cavity modes is studied. The quantum dots are embedded in a p-i-n diode structure. Different designs of photonic crystal cavities are used, namely H1 and L3 and the Purcell effect is demonstrated. Furthermore, the fine tuning of the H1 cavity design is studied in order to achieve far field emission profiles that result in higher collection efficiency. An increase in the overall signal from the quantum dot when it is coupled to a cavity is observed, due to the Purcell effect and the improved collection efficiency. This together with the deterministic charging of the quantum dot that is demonstrated, can be used for a single electron spin measurement.  相似文献   

2.
We review the basic light‐matter interactions and optical properties of chip‐based single photon sources, that are enabled by integrating single quantum dots with planar photonic crystals. A theoretical framework is presented that allows one to connect to a wide range of quantum light propagation effects in a physically intuitive and straightforward way. We focus on the important mechanisms of enhanced spontaneous emission, and efficient photon extraction, using all‐integrated photonic crystal components including waveguides, cavities, quantum dots and output couplers. The limitations, challenges, and exciting prospects of developing on‐chip quantum light sources using integrated photonic crystal structures are discussed.  相似文献   

3.
We present time-resolved spontaneous emission measurements of single quantum dots embedded in photonic crystal waveguides. Quantum dots that couple to a photonic crystal waveguide are found to decay up to 27 times faster than uncoupled quantum dots. From these measurements beta-factors of up to 0.89 are derived, and an unprecedented large bandwidth of 20 nm is demonstrated. This shows the promising potential of photonic crystal waveguides for efficient single-photon sources. The scaled frequency range over which the enhancement is observed is in excellent agreement with recent theoretical proposals taking into account that the light-matter coupling is strongly enhanced due to the significant slow-down of light in the photonic crystal waveguides.  相似文献   

4.
A. Hatef 《Optics Communications》2011,284(9):2363-5383
In this paper we have developed a theory for the decay of a quantum dot doped in a two-dimensional metallic photonic crystal consisting of two different metallic pillars in an air background medium. This crystal structure forms a full two-dimensional photonic band gap when the appropriate pillar sizes are chosen. The advantage of using two metals is that one can easily control the density of states and optical properties of these photonic crystals by changing the plasma energies of two metals rather than one. Using the Schrödinger equation method and the photonic density of states, we calculated the linewidth broadening and the spectral function of radiation due to spontaneous emission for two-level quantum dots doped in the system. Our results show that by changing the plasma energies one can control spontaneous emission of quantum dots doped in the metallic photonic crystal.  相似文献   

5.
San Chen 《Applied Surface Science》2008,254(13):4211-4215
A new approach, that combines the photolithography and conformal deposition techniques, was proposed to fabricate Si-based three-dimensional optical microcavities on patterned substrates. Different from the lateral optical confinement of 3D microcavities by using total internal reflection, Bragg reflectors are used for all three-dimensional optical confinement. From the room temperature photoluminescence spectra, discrete optical modes with obvious side-dependence were observed. With the lateral size decreased from 4.5 μm to 1.5 μm, the modes shift to higher energies and the mode splitting increases, which indicates that 3D optical microcavities act like photonic quantum dots. The numerical calculations of quantized photon states in photonic quantum dots show a quantitative agreement with these observed discrete optical eigenmodes.  相似文献   

6.
Performing fluorescence wide-field microscopy we have imaged single semiconductor quantum dots deep inside a 3-dimensional photonic crystal prepared from colloidal polymer beads. Exploring the emission diffraction patterns in defocused images of quantum dots we demonstrate that the direction-dependent photonic stop band imprints an anisotropy to the angular emission of a single quantum dot. Hence a single, quasi-point-like emitter is manipulated to radiate its photons only to certain well-defined directions by means of the anisotropic light propagation in photonic crystals. The experiments thus provide new routes to evaluate local, frequency selective optical properties in 3-dimensional photonic crystals employing single emitters.  相似文献   

7.
A detailed study of the degree of circular polarization and the angular dependence of the emission spectra of an array of InAs quantum dots embedded in GaAs photonic nanostructures with chiral symmetry in the absence of an external magnetic field is carried out. A strong angular dependence of the spectra and the degree of circular polarization of radiation from quantum dots, as well as a significant effect of the lattice period of the photonic crystal on the radiation characteristics, is observed. The dispersion of photonic modes near the (±3, 0) and (±2, ±2) Bragg resonances is investigated in detail. The experimentally observed polarization, spectral, and angular characteristics of the quantum-dot emission are explained in the framework of a theory describing radiative processes in chiral photonic nanostructures.  相似文献   

8.
In a nano-laser of Si quantum dots (QD), the smaller QD fabricated by nanosecond pulse laser can form the pumping level tuned by the quantum confinement (QC) effect. Coupling between the active centers formed by localized states of surface bonds and the two-dimensional (2D) photonic crystal used to select model can produce a sharp peak at 2.076 eV in the nano-laser. It is interesting to make a comparison between the localized electronic states in gap due to defect formed by surface bonds and the localized photonic states in gap of photonic band due to defect of 2D photonic crystal.  相似文献   

9.
Self-diffraction at a one-dimensional dynamic photonic crystal formed in the colloidal solution of CdSe/ZnS quantum dots has been discovered. This self-diffraction appears simultaneously with self-diffraction at induced transparency channels at the resonant excitation of the main electron–hole (excitonic) transition of quantum dots by two laser beams with a Gaussian intensity distribution over the cross section. It is shown that a nonlinear change in the absorption of colloidal quantum dots results in the formation of a transparency channel and an induced amplitude diffraction grating, and a significant nonlinear change in the refractive index (Δn ≈ 10?3) in the absorbing medium is responsible for the formation of the dynamic photonic crystal. Self-diffracted laser beams are revealed propagating not only in directions corresponding to self-diffraction at the induced diffraction grating but also in directions satisfying the Laue condition.  相似文献   

10.
This paper demonstrates experimentally and numerically that a significant modification of spontaneous emission rate can be achieved near the surface of a three-dimensional photonic crystal.In experiments,semiconductor core-shell quantum dots are intentionally confined in a thin polymer film on which a three-dimensional colloidal photonic crystal is fabricated.The spontaneous emission rate of quantum dots is characterised by conventional and time-resolved photoluminescence (PL) measurements.The modification of the spontaneous emission rate,which is reflected in the change of spectral shape and PL lifetime,is clearly observed.While an obvious increase in the PL lifetime is found at most wavelengths in the band gap,a significant reduction in the PL lifetime by one order of magnitude is observed at the short-wavelength band edge.Numerical simulation reveals a periodic modulation of spontaneous emission rate with decreasing modulation strength when an emitter is moved away from the surface of the photonic crystal.It is supported by the fact that the modification of spontaneous emission rate is not pronounced for quantum dots distributed in a thick polymer film where both enhancement and suppression are present simultaneously.This finding provides a simple and effective way for improving the performance of light emitting devices.  相似文献   

11.
The insertion of a metal-coated tip on the surface of a photonic crystal microcavity is used for simultaneous near field imaging of electric and magnetic fields in photonic crystal nanocavities, via the radiative emission of embedded semiconductor quantum dots (QD). The photoluminescence intensity map directly gives the electric field distribution, to which the electric dipole of the QD is coupled. The magnetic field generates, via Faraday's law, a circular current in the apex of the metallized probe that can be schematized as a ring. The resulting magnetic perturbation of the photonic modes induces a blue shift, which can be used to map the magnetic field, within a single near-field scan.  相似文献   

12.
We propose and demonstrate the operation of a nanometric optical NOT gate using CuCl quantum dots coupled via an optical near-field interaction. The device was smaller than 20 nm and its repeated operation was verified. The operating energy of this device was much lower than that of a conventional photonic device. We also introduce all-optical NAND and NOR gates using coupled quantum dots. Toward an actual nanophotonic device, we discuss the possibility of coupled InAlAs quantum dots. A double layer of InAlAs quantum dots for nanophotonic device operation was prepared using molecular beam epitaxial growth. We obtained a near-field spectroscopy signal, indicating that the InAlAs quantum dots coupled with the optical near field acted as a NOT gate. The experimental results show that the sample has great potential as an actual nanophotonic device. PACS 78.67.Hc; 07.79.Fc; 42.79.Ta  相似文献   

13.
We study numerically and analytically a binary mixture of quantum dots exhibiting gain and loss. For a mixture of gain quantum dots and silver nanoparticles, we find conditions when the composite shows negative dielectric constant operation and lossless operation. The composites of this kind may be used for dense integration of photonic components as well as modulation and switching in optical interconnect systems L. Thylen is also at Dept of Microelectronics and Applied Physics, Royal Institute of Technology (KTH), 164 40 Kista, Sweden.  相似文献   

14.
We study 3D globular photonic crystals based on synthetic opals filled with semiconductor core/shell quantum dots CdSe/CdS by measuring the photoluminescence spectra. The spectra were obtained using 369, 384, and 408 nm LED light excitation and involving a pulse YAG laser operating at 365 and 266 nm. The study shows that the photoluminescence spectra of opal filled with CdSe/CdS changes sufficiently in comparison with spectra taken for pure opal and a reference colloidal solution of CdSe/Cds quantum dots in toluene. Such opals may be used to fabricate a narrow-band light sources.  相似文献   

15.
The ability to control the nucleation site of a single quantum dot will have a profound effect on the development of quantum dot‐based photonic devices. The deterministic approach will provide a truly scalable technology that can take full advantage of conventional semiconductor processing for device fabrication. In this review, we discuss the progress towards the integration of deterministically nucleated single quantum dots with top‐down quantum optical devices targeting telecommunication wavelengths. Advances in site‐controlled quantum dot nucleation using selective‐area epitaxy now makes it possible to position quantum dots at predetermined positions on a substrate in registry with alignment markers. This, in turn, has allowed for devices fabricated in subsequent processing steps to be aligned to individual quantum dots. The specific devices being targeted are gated‐single dots and coupled dot‐cavity systems which are key components of efficient sources of single photons and entangled photon pairs.  相似文献   

16.
The design, fabrication, and characterization of an electrically injected quantum-dot photonic crystal microcavity light source are described. The optical gain in the GaAs/AlGaAs-based device is provided by self-organized InGaAs quantum dots with ground-state room-temperature emission at 1.1 microm. The carriers are injected directly into the photonic crystal microcavity, which contains approximately 50 dots, avoiding surface state recombination in the photonic crystal pattern. The spectral characteristics of a single-defect photonic crystal microcavity show a single 2 nm broad microcavity resonance. The output power is of the order of a few tens of nanowatts.  相似文献   

17.
Zhang JY  Wang XY  Xiao M  Ye YH 《Optics letters》2003,28(16):1430-1432
The angular dependence of the spontaneous emission of CdTe quantum dots (QDs) inside a photonic crystal with a pseudogap is reported. The sensitive dependences of the radiative lifetime and the photoluminescence spectrum of CdTe QDs on the observation angle demonstrate the effect of the photonic bandgap on the spontaneous emission of the QDs.  相似文献   

18.
We fabricate photonic crystal slab microcavities embedded with GaAs quantum dots by electron beam lithography and droplet epitaxy. The Purcell effect of exciton emission of the quantum dots is confirmed by the micro photoluminescence measurement. The resonance wavelengths, widths, and polarization are consistent with numerical simulation results.  相似文献   

19.
A revisited realization of the Young's double slit experiment is introduced to directly probe the photonic mode symmetry by photoluminescence experiments. We experimentally measure the far field angular emission pattern of quantum dots embedded in photonic molecules. The experimental data well agree with predictions from Young's interference and numerical simulations. Moreover, the vectorial nature of photonic eigenmodes results in a rather complicated parity property for different polarizations, a feature which has no counterpart in quantum mechanics.  相似文献   

20.
The spontaneous emission decay dynamics of nanocrystal quantum dots embedded into biotemplated titania photonic crystals with a diamond-based lattice are investigated. Modification of the decay rate of quantum dot emission over wide frequency bandwidths in the visible by the photonic crystals is observed. Frequency-dependent analysis reveals both inhibition and enhancement of emission with a radiative lifetime variation by more than a factor of 10.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号