首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
S0 → S1 and S0 → S2 electronic transitions have been observed in UV–Visible absorption spectroscopy of 3-pyrazolyl-2-pyrazoline (PZ) in different homogeneous solvents. Radiative emissions and relaxation processes from S1 and S2 states of PZ have been resolved in water, ethylene glycol and glycerol whereas in polar aprotic and protic solvents the radiative transitions have been observed from S1 state. The S2–S1 electronic energy spacing has been calculated from the absorption maxima of the S0 → S2 transitions and fluorescence maxima of the S1 → S0 transitions. Solute–solvent interactions have been established to rationalize the photophysical modification of PZ in H-bonding solvents.  相似文献   

2.
The absorption, fluorescence and excitation fluorescence spectra dipyrido[3,4-b:2,3-d]-phenazine (DPPZ1) have been measured in non-polar and polar matrices at room temperature, and were taken into account to explain the origin of the relatively weak emission of this molecule in both type of environment. The electronic structure of DPPZ1 was calculated using a modified INDO CI method. The geometry optimization has been performed using the MNDO method. According to the spectra and the results of calculations, the lowest excited singlet state S1 of DPPZ1 molecule is of n*-type and the next one, S2 state, is of π,π*-type. The energy gap ΔEcalc is equal 4770 cm−1. The low efficiency of the emission observed in the hydroxylic solvent can be interpreted in terms of thermal quenching of the π,π*-type fluorescence. However, experimental results obtained suggest that in nonpolar solvents the emission of the molecule examined is an anomalous S2→S0 fluorescence.  相似文献   

3.
The photophysical behaviour of trans-methyl p-(dimethylamino) cinnamate (t-MDMAC) donor–acceptor system has been investigated by steady-state absorption and emission spectroscopy and quantum chemical calculations. The molecule t-MDMAC shows an emission from the locally excited state in non-polar solvents. In addition to weak local emission, a strong solvent dependent red shifted fluorescence in polar aprotic solvents is attributed to highly polar intramolecular charge transfer state. However, the formation of hydrogen-bonded clusters with polar protic solvents has been suggested from a linear correlation between the observed red shifted fluorescence band maxima with hydrogen bonding parameters (). Calculations by ab initio and density functional theory show that the lone pair electron at nitrogen center is out of plane of the benzene ring in the global minimum ground state structure. In the gas phase, a potential energy surface along the twist coordinate at the donor (–NMe2) and acceptor (–CH = CHCOOMe) sites shows stabilization of S1 state and destabilization S2 and S0 states. A similar potential energy calculation along the twist coordinate in acetonitrile solvent using non-equilibrium polarized continuum model also shows more stabilization of S1 state relative to other states and supports solvent dependent red shifted emission properties. In all types of calculations it is found that the nitrogen lone pair is delocalized over the benzene ring in the global minimum ground state and is localized on the nitrogen centre at the 90° twisted configuration. The S1 energy state stabilization along the twist coordinate at the donor site and localized nitrogen lone pair at the perpendicular configuration support well the observed dual fluorescence in terms of proposed twisted intramolecular charge transfer (TICT) model.  相似文献   

4.
The fluorescence excitation and dispersed fluorescence spectra of the open-ring isomer of 1,2-bis(3-methyl-2-thienyl)perfluorocyclopentene have been measured in a supersonic free jet. No vibronic structure has been observed in the excitation spectrum. The intensity of fluorescence gradually increases with the excitation energy in the 25,500–28,700 cm−1 region, indicating that the geometry of the molecule substantially changes upon photoexcitation. The dispersed fluorescence spectrum is anomaly Stokes-shifted with respect to the excitation energy, suggesting that the S2(1B) state is initially excited followed by rapid internal conversion from the S2(1B) to S1(2A) state. The fluorescence is due to the S1(2A)–S0(1A) transition. Density functional theory calculations at the B3LYP/6-31G** level have been carried out to investigate stable conformations responsible for the observed spectra.  相似文献   

5.
Reaction between 5,5′-methylenebis(salicylaldehyde) or 5,5′-dithiobis(salicylaldehyde) and 1,2-diaminocyclohexane in equimolar ratio leads to the formation of new polymeric chelating ligands [–CH2(H2sal-dach)–]n (I) and [–S2(H2sal-dach)2–]n (II). These ligands react with [VO(acac)2] in DMF to give coordination polymers [–CH2{VO(sal-dach)·DMF}–]n (1) and [–S2{VO(sal-dach)·DMF}–]n (2). Both complexes are insoluble in common solvents and exhibit a magnetic moment value of 1.74 and 1.78μB, respectively. IR spectral studies confirm the coordination of ligands through the azomethine nitrogen and the phenolic oxygen atoms to the vanadium. These complexes exhibit good catalytic activity towards the oxidation of styrene, cyclohexene and trans-stilbene using tert-butylhydroperoxide as an oxidant. Concentration of the oxidant and reaction temperature has been optimised for the maximum oxidation of these substrates. Under the optimised conditions, oxidation of styrene gave a maximum of 76% (with 1) or 85% (with 2) conversion having following products in order of selectivity: benzaldehyde > styreneoxide > 1-phenylethane-1,2-diol > benzoic acid. A maximum of 98% conversion of cyclohexene was obtained with both the catalysts where selectivity of cyclohexeneoxide varied in the order: 2 (62%) > 1 (45%). With the conversion of 33% (with 1) and 47% (with 2), oxidation of trans-stilbene gives benzaldehyde, benzil and trans-stilbeneoxide as major products.  相似文献   

6.
In addition to the red phosphorescence (T1(3 A2n, π*) → S0) xanthione exhibits in solution an emission with a maximum at ≈ 23 000 cm−1 and φf(298°) = 5 × 10−3. It is shown that this emission is fluorescence from the second excited singlet state (S2 (1A1 π, π*) → S0).  相似文献   

7.
This work presents chemical modeling of solubilities of metal sulfates in aqueous solutions of sulfuric acid at high temperatures. Calculations were compared with experimental solubility measurements of hematite (Fe2O3) in aqueous ternary and quaternary systems of H2SO4, MgSO4 and Al2(SO4)3 at high temperatures. A hybrid model of ion-association and electrolyte non-random two liquid (ENRTL) theory was employed to fit solubility data in three ternary systems H2SO4–MgSO4–H2O, H2SO4–Al2(SO4)3–H2O at 235–270 °C and H2SO4–Fe2(SO4)3–H2O at 150–270 °C. Employing the Aspen Plus™ property program, the electrolyte NRTL local composition model was used for calculating activity coefficients of the ions Al3+, Mg2+ Fe3+ and SO42−, HSO4, OH, H3O+, respectively, as well as molecular species. The solid phases were hydronium alunite (H3O)Al3(SO4)2(OH)6, hematite Fe2O3 and magnesium sulfate monohydrate (MgSO4)·H2O which were employed as constraint precipitation solids in calculating the metal sulfate solubilities. A correlation for the equilibrium constants of the association reactions of complex species versus temperature was implemented. Based on the maximum-likelihood principle, the binary interaction energy parameters for the ionic species as well as the coefficients for equilibrium constants of the reactions were obtained simultaneously using the solubility data of the ternary systems. Following that, the solubilities of metal sulfates in the quaternary systems H2SO4–Fe2(SO4)3–MgSO4–H2O, H2SO4–Fe2(SO4)3–Al2(SO4)3–H2O at 250 °C and H2SO4–Al2(SO4)3–MgSO4–H2O at 230–270 °C were predicted. The calculated results were in excellent agreement with the experimental data.  相似文献   

8.
The solvent polarity dependence of the fluorescence quantum yield and lifetime of 1-dimethylaminonaphthalene (DMAN) was fund different from that of normal case in that the two parameters increase with increasing solvent polarity, in spite of the fact that the emissive state of DMAN was also of ICT character. Steady state and time-resolved fluorescence studies have currently indicated that a thermally activated internal conversion (IC) occurred with DMAN[1,2]. The IC was assumed to be the consequence, of the vibronic coupling of the emissive S1 state and S2 state with the activation energy of the IC process depending on the energy gap between S1 and S2 states. It was hence put, forward that with increasing solvent, polarity the energy of the S1 state would be lowered more than that of the S2 state, leading to higher energy gap between the S1 and S2 states and therefore suppressed IC. As a consequence, increased fluorescence quantum yield and lengthened lifetime were observed.  相似文献   

9.
10.
Aerosol flame pyrolysis deposition method was applied to deposit the oxide glass electrolyte film and LiCoO2 cathode for thin film type Li-ion secondary battery. The thicknesses of as-deposited porous LiCoO2 and Li2O–B2O3–P2O5 electrolyte film were about 6 μm and 15 μm, respectively. The deposited LiCoO2 was sintered for 2 min at 700 °C to make partially densified cathode layer, and the deposited Li2O–P2O5–B2O3 glass film completely densified by the sintering at 700 °C for 1 h. After solid state sintering process the thicknesses were reduced to approximately 4 μm and 6 μm, respectively. The cathode and electrolyte layers were deposited by continuous deposition process and integrated into a layer by co-sintering. It was demonstrated that Aerosol flame deposition is one of the good candidates for the fabrication of thin film battery.  相似文献   

11.
The performance of ab initio calculations for the ground and excited states of the Pt(saloph) complex is examined in detail. The S0–Si and T1–Ti absorption spectra are calculated, and the transition between the ground S0 state and the excited S1 state involves the HOMO-2, HOMO-1, HOMO and LUMO. Moreover, calculations show that the emissive singlet is of mixed MLCT/LLCT characteristic. On the other hand, the molecular geometry of the complex is nearly planar in the ground state while the geometry is obviously nonplanar in the excited state of S1(π, π*) in the gas phase.  相似文献   

12.
Picosecond polarized fluorescence experiments on DMABN (4-(dimethyl amino) benzonitrile) in polar solvents and toluene are reported. From the detected polarized fluorescence components emission anisotropy histograms are constructed and compared with the synthetic data simulated for the energy levels scheme in DMABN. For the short-wavelength emission of DMABN vibronic coupling between the close-lying S1 and S2 energy levels occurs and leads to a vibronically mixed polarization of the S1 (FB) fluorescence. Low initial values of the emission anisotropy decays for the long-wavelength (FA) emission are observed. This observation can be explained by an assumption that the internal twisting of the amino group in DMABN changes the angular orientation of DMABN and by an assumption that the emission dipole moment in the FA emission band is not parallel to the absorption dipole moment in the S2 (1La) absorption band.  相似文献   

13.
Abstract— Pyrene fluorescence spectra have been run in 62 solvents of widely differing solvent polarity. As has been noted previously, the intensity ratio of the first (the 0–0 band) and third bands in vibronic fine structure of these spectra are very sensitive to solvent polarity. These I 1/ I 3 values, however, are not sensitive to hydrogen bonding aspects of solvent-solute interactions. Correlations are reported with Winstein's Y values and with Dimrotb's E T values. On this basis the I 1/ I 3 values for pyrene fluorescence are suggested as the basis for a new empirical scale of solvent polarity, called the Py scale, which offers certain conveniences over other scales of solvent polarity.  相似文献   

14.
Absorption spectra of C60 have been measured in the ranges (a) 190–700 nm in n-hexane solutions at 300 K, (b) 390–700 nm in n-hexane and in 3-methylpentane solutions at 77 K. 40 vibronic bands were observed. They exhibit a large range of bandwidths and intensities, whose significance is discussed. Assignment of electronic transitions has been carried out using the results of theoretical calculations. Vibronic structures have been analyzed within the framework of theories of electronic transitions of polyatomic molecules applied to the Ih symmetry group. Nine allowed 1T1u1Ag transitions have been assigned in the 190–410 nm region. Observed and calculated allowed transition energies and oscillator strengths are compared. Detailed vibronic analyses of the 1 1T1u−1 1Ag and 2 1T1u−1 1Ag transitions illustrate the role of Jahn-Teller couplings. Orbitally forbidden singlet-singlet transitions are observed between 410 and 620 nm. Their vibronic structures were analyzed in terms of concurrent Herzberg-Teller and Jahn-Teller vibronic interactions. The 77 K spectra provided useful information on hot bands and on other aspects of the analyses. Vibronic bands belonging to triplet←singlet transitions were detected between 620 and 700 nm.  相似文献   

15.
The S1↔S0 transitions of two conformers of 1,8-bis(dimethylamino) naphthalene, the “proton sponge”, have been studied by semiempirical AM1 calculations. They reveal that “inversion of states” occurs in the asymmetric conformer DMAN-2, which in the gas phase may be emitted from the 1La state in comparison to the 1Lb state in symmetric DMAN-1. It was also concluded that because of the mixed character of the HOMO-1 orbital in both conformers, a certain CT contribution to the S0↔S1 transition has to be taken into account. The calculated maxima of absorption and emission have been compared to those experimentally obtained in supersonic expansion.  相似文献   

16.
The S2 → S0 fluorescence spectra and quantum yields and the S2 lifetimes of 2,2,3,3-tetramethylindanethione (TMIT) have been measured in several solvents using a synchronously pumped picosecond dye laser excitation system. The S2 nonradiative decay rate is markedly solvent dependent. In inert perfluoroalkane solvents remarkably large S2-S0 fluorescence quantum yields (θf = 0.14) and long S2 lifetimes (τ = 880 ps) are measured. Hydrocarbons are efficient excited-state quenchers.  相似文献   

17.
The role of electron and proton transfer processes in the photophysics of hydrogen-bonded molecular systems has been investigated with ab initio electronic-structure calculations. We discuss generic mechanisms of the photophysics of a hydrogen-bonded aromatic pair (pyrrole–pyridine), as well as an intra-molecularly hydrogen-bonded π system composed of the same molecular sub-units (2(2′-pyridyl)pyrrole). The reaction mechanisms are discussed in terms of excited-state minimum-energy paths, conical intersections and the properties of frontier orbitals. A common feature of the photochemistry of these systems is the electron-driven proton transfer (EDPT) mechanism. In the hydrogen-bonded complex, a highly polar charge transfer state of 1ππ* character drives the proton transfer, which leads to a conical intersection of the S1 and S0 surfaces and thus ultrafast internal conversion. In 2(2′-pyridyl)pyrrole, out-of-plane torsion is additionally needed for barrierless access to the S1–S0 conical intersection. It is pointed out that the EDPT process plays an essential role in the fluorescence quenching in hydrogen-bonded aromatic complexes, the function of organic photostabilizers, and the photostability of biological molecules.  相似文献   

18.
The energies of the S0 and S1 states of polychlorinated dibenzofurans (PCDFs) were calculated using the Hartree–Fock (HF) and configuration interaction-singles (CIS) methods. We can obtain the (0–0) transition energies of PCDFs with good accuracy if the energies calculated using the HF and CIS methods are adjusted to take the electron correlation energy into account. The correlation energy of the S0 state was calculated using the Møller–Plesset correlation correction truncated at the second order (MP2), and that of the S1 state was determined using experimental data. The correlation energies for both S0 and S1 states were expressed as the sum of the contributions arising from dibenzofuran (DF) and substituted chlorine atoms. The energy of the ground state calculated using the additivity approximation was in good agreement with the energy given directly by the MP2 method. The (0–0) S1←S0 transition energies corrected for electron correlation energy agreed well with the available experimental data. The approach proposed in this paper may be useful for the estimation of the electronic transition energy for large aromatic molecules.  相似文献   

19.
By using femtosecond time-resolved stimulated emission pumping fluorescence depletion (FS-TR-SEP-FD), we present a fluorescence depletion study of chlorophyll a (Chl a) in various solvent environments. Internal conversion times (IC) in different solvents are observed. It is found that all the S3 and S2 to S1 transition processes are extremely fast, and that the time constants of these processes range from 100 to 260 fs. In aprotic solvent, the rate of IC decreases with an increasing of solvent polarity.  相似文献   

20.
Irena Szczygiel   《Thermochimica Acta》2001,370(1-2):125-128
The phase diagram of the system CePO4–K3PO4 has been determined based on investigations by differential thermal analysis, X-ray powder diffraction, IR spectroscopy and optical microscopy. The system contains only one intermediate compound K3Ce(PO4)2, which melts incongruently at (1500±20)°C. This compound is stable down to room temperature and exhibits a polymorphic transition at 1180°C. It was confirmed that the low-temperature form β-K3Ce(PO4)2 crystallizes in a monoclinic system, space group P21/m with unit cell parameters a=9.579 (5), b=5.634 (6), c=7.468 (5) Å; =γ=90°, β=90.81 (3)°; V=403.083 Å3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号