首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.

Differential scanning calorimetry (DSC), isothermal stress testing–Fourier transform infrared spectroscopy (IST–FTIR), isothermal stress testing–high-performance liquid chromatography, and powder X-ray diffraction (PDRX) were used as screening techniques for assessing the compatibility of tobramycin with some currently employed ophthalmic excipients. In the first phase of the study, DSC was used as a tool to detect any interaction. The absolute value of the difference between the enthalpy of the pure tobramycin melting peak and that of its melting peak in the different analyzed mixtures was chosen as a parameter of the drug–excipient interaction degree. DSC results demonstrated that benzalkonium chloride, monobasic sodium phosphate, boric acid, edetate disodium, sodium metabisulfite, thimerosal, and potassium sorbate interact with tobramycin. Taking into account these results, it could be suggested that some of the changes observed in the IST–FTIR spectra of binary blends of tobramycin and some of the excipients would account for a possible interaction between the mixture component. In this study, PDRX did not provide much information, since only tobramycin–thimerosal interactions could be detected. DSC and IST–FTIR are suitable and simple methods for the detection of potential incompatibilities between active pharmaceutical ingredient (API) and excipients.

  相似文献   

2.

Alogliptin (ALG) is a hypoglycemic drug used in diabetes which inhibits the enzyme dipeptidyl peptidase-4 (DPP-4), preventing the degradation of incretins, stimulating insulin secretion. The physicochemical characteristics of ALG were evaluated by differential scanning calorimetry (DSC), thermogravimetry (TG) and scanning electron microscopy equipped with energy-dispersive X-ray spectrometer (SEM/EDS). The compatibility studies were carried out between ALG and excipients (physical mixtures, 1:1) using DSC, TG, diffuse reflectance Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRPD) and hot-stage microscopy. ALG presented purity near to 99%, melted in the range of 179.4–187.2 °C, followed by decomposition which started in 198.0 °C. SEM/EMS analysis of ALG presented irregular crystals and traces of impurities as copper and lead. DSC investigations obtained by physical mixtures showed minor alterations in the melting ranges of ALG with mannitol, magnesium stearate and commercial tablets. Solubilization of ALG in the fused excipient was observed by hot-stage microscopy between mannitol and ALG, and in tablets. The interaction observed in the mixture with magnesium stearate is due to the melting of the excipient and drug separately, first the excipient and then the drug. FTIR showed additional bands related to the excipients. XRPD proved that ALG has a crystal form and no alterations in the ALG profile were observed after the mixtures. ALG was compatible with all excipients tested. These results were important to understand the characteristics, stability and compatibility of the drug, and proved to be useful in preformulation studies.

  相似文献   

3.
For the development of dispersible tablets of itraconazole (ITR), techniques of thermal, Raman spectroscopy, and isothermal stress testing (IST) were used to assess the compatibility of ITR with selected excipients. Initially, differential scanning calorimeter (DSC) was used to evaluate the compatibility. Raman spectrum of drug–excipient mixture was also compared with that of pure drug and excipient. Compatibility of excipients defined in the prototype formula was tested using IST. Based on the DSC results alone, PEG-4000 was found to exhibit interaction with ITR. However, the results of Raman and IST studies showed that all the excipients used in the formula were compatible with ITR. Overall, compatibility of excipients with ITR was successfully evaluated using the combination of DSC, Raman spectroscopy, and IST techniques.  相似文献   

4.
Differential scanning calorimetry and thermogravimetric analysis with the support of X-ray powder diffraction and infrared spectroscopy were used as screening techniques for the compatibility testing of imatinib mesylate, with following excipients: magnesium stearate, polyvinylpyrrolidone, microcrystalline cellulose. In order to maximize the probability of interactions 1:1 (by mass) drug: excipient binary mixtures were analysed and compared to individual components. Additionally an influence of storage at temperatures of 25 and 40°C on physico-chemical stability on drug – excipient binary mixtures was investigated. The largest visible changes were observed in the DSC curves of imatinib mesylate – magnesium stearate mixtures.  相似文献   

5.
Thermal analysis is a routine method for analysis of drugs and substances of pharmaceutical interest. Thermogravimetry/derivative thermogravimetry (TG/DTG) and differential scanning calorimetry (DSC) are thermoanalytical methods which offer important information about the physical and chemical properties of drugs (purity, stability, phase transition, polymorphism, compatibility, kinetic analysis, etc.). This work exemplifies a general method of studying the drug-excipient interactions with the aim of predicting rapidly and inexpensively the long thermal stability of their mixtures. The TG/DTG and DSC were used as screening techniques for assessing the compatibility between indomethacin (IND) and its physical associations as binary mixtures with some common excipients. Based on their frequent use in preformulations eleven different excipients: corn starch, microcrystalline cellulose (PH 101; PH 102), colloidal silicon dioxide, lactose (monohydrate and anhydre), polyvinilpyrrolidone K30, magnesium stearate, talc, stearic acid, and manitol were blended with IND. The samples were prepared by mixing the analyte and excipients in a proportion of 1:1 (w:w). In order to investigate the possible interactions between the components, the thermal curves of IND and each selected excipient were compared with those of their 1:1 (w/w) physical mixtures. FT-IR spectroscopy and X-ray powder diffraction were used as complementary techniques to adequately implement and assist in interpretation of thermal results. On the basis of thermal results, confirmed by FT-IR and X-ray analyses, a possible interaction was found between IND with polyvinylpyrrolidone K30, magnesium stearate, and stearic acid.  相似文献   

6.
The evaluation of sildenafil citrate (SC), the best-selling drug for treatment of impotence, for compatibility with various excipients was investigated using thermal and isothermal stress testing. Differential scanning calorimetry (DSC), hot-stage microscopy (HSM) and liquid chromatography (LC) with ultraviolet detection were successfully employed to investigate the compatibility between SC and various excipients commonly used in solid form in the pharmaceutical industry. The studies were performed using 1:1 (m/m) drug/excipient physical mixtures and samples were stored under accelerated stability conditions (40 °C at 75% relative humidity). All excipients tested (such as colloidal silicon dioxide, croscarmellose sodium, lactose, mannitol and sucrose) showed potential incompatibilities by DSC and LC analysis after accelerated stability testing. However, some incompatibilities were not detected by the DSC method and were observed only when LC analysis was performed. HSM was able to differentiate active pharmaceutical ingredient degradation from solubilisation, supporting the interpretation of DSC in excipients where thermal events either overlapped or disappeared. The combination of both the analytical techniques (DSC and LC) and use of a stability chamber is extremely helpful in detecting incompatibilities and providing more robust and accurate approaches for pre-formulation studies.  相似文献   

7.
This study is part of a research project aimed to find and optimize methods by which drug-excipient compatibility can be reliably and quickly assessed. The objective of the present study was to evaluate the compatibility of the acetylsalicylic acid (ASA), an non-steroidal anti-inflammatory drug, with pharmaceutical excipients of common use including diluents, binders, disintegrants, lubricants and solubilising agents. In order to investigate the possible interactions between ASA and eleven excipients differential scanning calorimetry (DSC) and thermogravimetry/derivative thermogravimetry analysis completed by Fourier transform infrared spectroscopy (FT-IR) and X-ray powder diffraction were used for compatibility study. The DSC has proven to be, among the selected analytical techniques, the most sensitive and specific in assessing the compatibility. The samples, as physical mixtures, were prepared by mixing the analyte and excipients in a proportion of 1:1 (w:w). On the basis of thermal results (especially DSC), confirmed by FT-IR and X-ray analysis, a possible chemical interaction was found between the ASA with polyvinylpyrrolidone K30 (PVP) and magnesium stearate, respectively a possible physical interaction with colloidal silicon dioxide and stearic acid (Ac. St.).  相似文献   

8.
An experimental mixture design was applied to a differential scanning calorimetry (DSC) study performed to evaluate naproxen compatibility in tablet formulations consisting of four classic excipients (sorbitol, sodium carboxymethylcellulose, poly(ethylene glycol) 20000 and Veegum) each in adequate concentration ranges accounting for the relevant values actually used in pharmaceutical formulations. Twenty-seven different tablets were obtained from as many mixtures prepared according to the experimental design plan and analyzed in a random order by DSC. Statistical evaluation of experimental data enabled correlation of both enthalpy and onset temperature variations of drug melting endotherm (selected as responses indicative of the presence of drug-excipient interactions) with the mixture composition. Variance analysis (Anova) confirmed the reliability of the postulated polynomial model in providing adequate prediction of true system behaviour. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
Differential Scanning Calorimetry (DSC), thermogravimetry/derivative thermogravimetry (TG/DTG) and infrared spectroscopy (IR) techniques were used to investigate the compatibility between prednicarbate and several excipients commonly used in semi solid pharmaceutical form. The thermoanalytical studies of 1:1 (m/m) drug/excipient physical mixtures showed that the beginning of the first thermal decomposition stage of the prednicarbate (T onset value) was decreased in the presence of stearyl alcohol and glyceryl stearate compared to the drug alone. For the binary mixture of drug/sodium pirrolidone carboxilate the first thermal decomposition stage was not changed, however the DTG peak temperature (T peak DTG) decreased. The comparison of the IR spectra of the drug, the physical mixtures and of the thermally treated samples confirmed the thermal decomposition of prednicarbate. By the comparison of the thermal profiles of 1:1 prednicarbate:excipients mixtures (methylparaben, propylparaben, carbomer 940, acrylate crosspolymer, lactic acid, light liquid paraffin, isopropyl palmitate, myristyl lactate and cetyl alcohol) no interaction was observed.  相似文献   

10.
Study of excipients incompatibility with drugs in an early phase of pharmaceutical development is still a persistent difficulty within the pharmaceutical industry. We examine here the compatibility between an experimental drug (nebicapone) and common excipients using differential scanning calorimetry (DSC), high sensitivity DSC (HSDSC) and a conventional heat stress test. The results obtained indicate that nebicapone may be compatible with lactose monohydrate and sodium croscarmellose but is incompatible with magnesium stearate. This study concludes that HSDSC, in stepwise isothermal mode, may be used as a potential tool for detecting excipient incompatibilities.  相似文献   

11.
Differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy, and hot-stage microscopy were employed to evaluate the drug–excipient compatibility of atovaquone with commonly used tablet excipients. The DSC curves of pure drug and excipients were compared with their physical mixtures. Microcrystalline cellulose, titanium dioxide, colloidal silica, ferric oxide, lactose monohydrate, and sodium starch glycolate were compatible, while magnesium stearate, polyethylene glycol (PEG) 8000, Poloxamer 188, and hydroxypropyl methyl cellulose (HPMC) E15 showed incompatibility with the drug. Heat–cool–heat analysis of the physical and the ground mixture of later three excipients showed polymorphic transformation of atovaquone form III to form I, which occurred via amorphization with HPMC E15 and through solubilization mechanism with remaining two excipients. These outcomes were further supported by hot-stage microscopy. Results of milling experiments revealed a milling time-dependent polymorphic transformation and solubilization with HPMC E15 and PEG 8000, respectively. This study highlights the importance of compatibility assessment for selection of excipients in specific unit operations such as milling and grinding.  相似文献   

12.
Differential scanning calorimetry (DSC) is a primary technique for measuring the thermal properties of materials, which reflects the physico-chemical properties of drug substances. In the present study, it is used as a screening technique for assessing the compatibility of sitagliptin with some currently employed pharmaceutical excipients. The influence of processing conditions and their effects (simple blending, co-grinding or kneading) on drug stability was evaluated. Sitagliptin showed a sharp endothermic peak at 212.1 °C with an enthalpy change of 131.5 J g?1 indicating melting of drug. Facile transformation of dehydrated sitagliptin to monohydrate form was observed in some mixtures, disappearance of sharp melting endothermic peak of sitagliptin was observed in some mixtures. On the basis of DSC results, sitagliptin was found to be compatible with micro crystalline cellulose, croscarmellose, and pregelatinized starch. Some excipient interaction was observed with magnesium stearate, ascorbic acid, and citric acid. X-ray diffractometry and FT-IR were used as supportive tools in interpreting the DSC results. Overall, the excipients selected were compatible with the API and the mixtures are stable within the tested conditions. These results would be useful for formulation development of the film coated tablets of sitaglitptin.  相似文献   

13.
The 4,6-bis[2′(diethylamino)ethoxy]2,8,10-trimethylpyrido[3,2-g]quinoline (BG 637) is one of the compound from the pyrido[3,2-g] quinolines family. This compound had in vitro activity against the resistant cells and can reverse the multidrug resistance developed during the chemotherapeutic treatments. To characterize BG 637, techniques such as differential scanning calorimetry (DSC), Fourier transform infrared spectrometer (FTIR), ultra violet spectrophotometry (UV), gas chromatography coupled with mass spectrometry (GC/MS), nuclear magnetic resonance (NMR) and X-ray powder diffraction (XRPD) were used. Several of them were also used to show the stability of the drug during various storage conditions. DSC, FTIR and UV were used as screening techniques for assessing the compatibility of BG 637 with several commonly used pharmaceutical excipients. We compared the properties of the pure drug with those of binary mixture drug/excipient. Studied excipients were lactose monohydrate, microcrystalline cellulose, polyvinylpyrrolidone, sodium croscarmellose and magnesium stearate. Melting temperature and enthalpy of BG 637 in binary mixtures were similar to theoretical values. These results showed that BG 637 is a very stable compound and compatible with several pharmaceutical excipients.  相似文献   

14.
Carvedilol (CARVE) is an important cardiovascular drug with limited bioavailability. To improve its therapeutic performance, the investigation of new dosage forms is of great interest due its relevance in clinical applications. Therefore, the aim of this work was to evaluate the stability of CARVE and its drug–excipient compatibility to support its pharmaceutical development. Kinetic analysis under isothermal conditions using thermogravimetry was performed to determine the activation energy of CARVE through an Arrhenius plot. Differential scanning calorimetry, Fourier transform infrared spectroscopy, and optical microscopy were used to test binary mixtures of CARVE and selected excipients. The activation energy of CARVE was 81.2 kJ mol?1, and from the compatibility studies, all the excipients showed strong thermal interactions, presenting changes in the melting profile of the drug. In addition, analytical assays revealed no physical or chemical changes; because of this, all eight excipients studied are considered compatible and are recommended in formulations containing CARVE. All the evidence together attests to the low chemical reactivity of CARVE and provides useful information for the development of new pharmaceutical formulations containing CARVE.  相似文献   

15.
First-line drugs (rifampicin, RIF; isoniazid, INH; ethambutol, ETA; and pyrazinamide, PZA) recommended in conventional treatment of tuberculosis were analyzed in 1:1 w/w binary mixtures with microcrystalline cellulose MC 101 (CEL) and lactose supertab® (LAC) by differential scanning calorimetry (DSC), thermogravimetry (TG), differential thermal analysis (DTA), and Fourier transformed infrared analysis (FTIR) as part of development of fixed dose combination (FDC) tablets. Evidence of interaction between drug and pharmaceutical excipients was supposed when peaks disappearance or shifting were observed on DTA and DSC curves, as well as decreasing of decomposition temperature onset and TG profiles, comparing to pure species data submitted to the same conditions. LAC was showed to interact with RIF (absence of drug fusion and recrystallization events on DSC/DTA curves); INH (thermal events of the mixtures different from those observed for drug and excipient pure in DSC/DTA curves); PZA (decrease on drug fusion peak in DSC/DTA curves), and ETA (shift on drug onset fusion and absence of pure LAC events on DSC/DTA curves). In all cases, an important decrease on the temperature of drug decomposition was verified for the mixtures (TG analysis). However, FTIR analysis showed good correlation between theoretical and experimental drug-LAC spectra except for INH–LAC mixture, evidencing high incompatibility between these two species and suggesting that those interactions with PZA and RIF were thermally induced. No evidence of incompatibilities in CEL mixtures was observed to any of the four-studied drugs.  相似文献   

16.
The purpose of this study was to investigate the polymorphism and compatibility of benznidazole (BNZ), a drug used in the treatment of Chagas disease. This drug was subjected to a polymorphic screen using a number of solvents and precipitation procedures to explore the possible existence of different crystal structures of BNZ. The compatibility of BNZ with selected pharmaceutical excipients was evaluated in binary mixtures, in a ratio of 1:1 (w/w). These results were then analyzed with a variety of techniques, including differential scanning calorimetry, Fourier transform infrared spectroscopy, and X-ray powder diffractometry. No polymorphic forms of BNZ were detected despite some observed changes in the DSC profile. The thermal data indicate interaction of the drug with excipients hydroxyethylcellulose, polyethylene glycol, and hydroxypropyl-β-cyclodextrin. Additional studies using infrared spectroscopy confirm the incompatibility of BNZ with only the polyethylene glycol. This excipient should not be used in the development of solid dosage forms containing BNZ.  相似文献   

17.
Psoralens are widely used for the treatment of psoriasis. Trioxsalen is a drug prescribed low-dose, belonging to the group of substituted psoralen. The aim of this study was to evaluate the compatibility of trioxsalen with pharmaceutical excipients used in the solid forms by analytical techniques. Binary mixtures between the trioxsalen and pharmaceutical excipients (namely, magnesium stearate, α-lactose, microcrystalline cellulose 102, pregelatinized starch, mannitol, sodium lauryl sulfate, sodium starch glycolate, and croscarmellose sodium) were examined. The trioxsalen–sodium lauryl sulfate mixture displayed some physical interaction based on the DTA and DSC results, but the FTIR study ruled out any chemical change.  相似文献   

18.
This study demonstrates the thermalanalysis applications in compatibility and stability studies of the propranolol binary mixture sand tablets A and B. The propranolol binary mixtures were prepared in the laboratory and compared to the fully formulated tablets using the thermogravimetric (TG) and calorimetric(DSC) methods. DSC of binary mixtures showed similar phase transition to propranolol drug. The tablets phase transition decreased and there was no detectable significant interaction in propranolol–lactose mixture and tablets. The DSC-photovisual test revealed an interaction similar to the Maillard reaction. The TG isothermal study showed a difference in the profile between the drug and tablets due excipients quality and problems in manufacture process. The kinetic parameters indicated a lower stability for the tablets than propranolol drug. The thermal techniques thermally differentiated the propranolol preparations demonstrating the importance in the design development of pharmaceuticals solid-dosage form. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Chemical compatibility of two drugs, namely, etamsylate and fluconazole was studied with lactose as excipient, employing differential scanning calorimetry (DSC) and X-ray diffraction (XRD) techniques. The DSC patterns recorded for the mixtures of both the drugs with the common excipient (lactose) indicated that fluconazole as well as etamsylate were incompatible with lactose at high temperatures. X-ray diffraction patterns recorded for pure drugs and lactose and the mixtures of individual drugs with lactose prepared at room temperature by intimate grinding of the components revealed incompatibility of both the drugs with lactose also at room temperature. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
This work is part of a systematic study undertaken to find and optimize a general method of detecting the drug-excipient interactions, with the aim of predicting rapidly and inexpensively the long term stability of a pharmaceutical product and speed up its marketing. Here, in particular, the compatibility of haloperidol with several excipients (PVP, magnesium stearate and α-lactose) in binary and ternary mixtures, both as prepared and ball-milled, has been assessed by thermal methods, electron microscopy, IR spectroscopy and X-ray diffraction. The differences between the experimental behaviour of the systems and that expected as weighted average of similarly treated pure components are interaction indicators. The DSC has proven to be, among the selected analytical techniques, the most sensitive and specific in assessing the compatibility. A strong interaction has been observed between PVP and haloperidol. It is favoured by the mechanical stress and is more evident in the composition 20:80. On the contrary, α-lactose and magnesium stearate were found to be compatible with the drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号