首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bismuth ferrite (BiFeO3) nanopowder have been successfully synthesized for the first time via a microwave-assisted sol-gel combustion method by using citric acid as fuel. The resulting nanopowder was characterized using FT-IR, TG-DTA, XRD, EDX, VSM, SEM, and UV-Vis DRS. A ferromagnetic hysteresis loop with a saturation magnetization (MS) of 0.66?emu?g?1 has been observed at room temperature in the sample. The optical properties of the nanosized BiFeO3 showed its small band gap (=2.08?eV) indicates a possibility of utilizing much visible light for photocatalysis.  相似文献   

2.
MgF2 coating solutions were solvothermally treated at 160?°C for different time periods, this procedure induced crystallization and particle growth. Antireflection coatings prepared on glass from these solutions were compared to films derived from untreated precursor material. Ellipsometric porosimetry (EP) was employed to characterize structural features of coatings on glass as function of annealing temperature. Based on precursor solutions that had undergone solvothermal treatment antireflective coatings with a peak transparency exceeding 99% were prepared on PMMA substrates.
Solvothermal treatment of MgF2 precursor solutions results in crystallization of particles that can directly be applied to PMMA substrates for λ/4 antireflective films.
  相似文献   

3.
Since the late 1960s, ceric hydrogen phosphates have attracted the attention of scientists due to remarkable ion exchange, sorption, proton-conduction and catalytic properties. In this work, through the application of various solvents, we, for the first time, have obtained monolithic aerogels based on ceric hydrogen phosphates with high porosity (~99%) and extremely low density (~10?μg/cm3). The composition and structure of aerogels were thoroughly studied with XRD, TEM, SEM, XPS, low temperature nitrogen adsorption methods, TGA/DSC, Fourier-transform infrared spectroscopy (FTIR) and small-angle neutron scattering (SANS). The aerogels were found to belong to the fibrous macroporous aerogels family.  相似文献   

4.
Two series of TiO2 thin films were prepared based on soluble precursor powders: The first run originated directly from an alcohol-based coating solution whereas for the second batch the aqueous precursor powder sol had previously undergone a hydrothermal treatment. The respective microstructures were characterized by electron microscopy, the phase evolution was monitored by X-ray diffraction. Ellipsometric porosimetry (EP) was employed to reveal changes of porosity and pore size induced by thermal treatment of the films.
Soluble TiO2 precursor powders were hydrothermally treated to yield coating solutions. Films from these sols were compared with those directly obtained by dissolving the precursor powders. Results indicate that crystallization to anatase is induced under hydrothermal conditions and the resulting films mostly maintain their porosity throughout thermal treatment. In contrast to that coatings processed from as-dissolved precursor powders undergo more extensive densification
  相似文献   

5.
New silica-based particles embedding iron were synthesized following a freeze-drying-assisted sol–gel route. The samples were preliminary characterized in view of potential applications as theranostic magnetic resonance imaging (MRI) contrast agents and for hyperthermia treatment. The structural changes induced by iron addition were studied by X-ray diffraction, Fourier transform infrared and electron paramagnetic resonance spectroscopies. The addition of Fe2O3 impedes the SiO2 crystallization denoting that iron plays, in this case, the role of a glass network stabilizer. The composition on surface and nearby was analyzed by X-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy both before and after samples immersion in simulated body fluid. The results suggest the nominal composition with 5?mol% Fe2O3 added to 0.7SiO2?0.3Na2O matrix of interest for further investigations as potential MRI contrast agent and hyperthermia vector.  相似文献   

6.
In this research, LiMn2O4 nanopowders were synthesized by the sol–gel method using gelatin as a chelating agent. Three categories of samples with various weight ratios of gelatin to the final product, 1:1, 2:1, and 3:1, have been synthesized. The produced gel was dried in a controllable oven with a slow slope up to 250??C and calcined at different temperatures. The results show that the amount of gelatin affects the structural properties such as the formation temperature of the spinel structure, the homogeneity of the size distribution and size of the particles. The sample with the weight ratio of 3:1 of gelatin to the final product has a lower temperature for the formation of LiMn2O4 with more homogeneity, and smaller particles with the average size of 70?nm, which is calcined at 750??C, while the samples with the weight ratios 2:1 and 1:1 have the average particle sizes of 75 and 89?nm, respectively.  相似文献   

7.
The behaviour of alginate gel film in response to the tensile load is analysed in this paper. The bubbles of 0.5?mm diameter were embedded in the film by the fluidic method prior to gelation, thus providing uniform voidage over the entire film. Further, the intrinsic porosity of the gel matrix around the voids was varied by removing water through either evaporation under vacuum, or employing lyophilisation. The Poisson’s ratio and the modulus of elasticity were estimated from direct measurements. The viscoelasticity of the gel matrix was characterized from stress-relaxation measurement. The transient response to tensile loading and the evolution of stress contours were studied through numerical simulation in ANSYS. The ultimate strength was studied for the gel films with embedded voids of different sizes. The numerical simulations were validated by experimental measurements.  相似文献   

8.
The aim of this work was an investigation of structural and electrical properties of ZnO/Zn2-xFexTiO4 (x?=?0.7, 1, 1.4) powders. The compounds obtained by sol-gel method are characterized by several techniques: X-ray diffraction (XRD), N2 adsorption–desorption isotherms, scanning and transmission electron microscopy (SEM and TEM), X-ray photoelectron spectroscopy (XPS), electrical and dielectrical measurements. The XRD, SEM and XPS analysis confirmed the formation of ZnFeTiO4 inverse spinel structure. The electrical and dielectrical properties of ZnO/Zn2-xFexTiO4 (x?=?0.7, 1, 1.4) were measured by impedance spectroscopy, revealing a decrease in the electrical conductivity and the dielectric constant with Fe content.  相似文献   

9.
Boron Nitride (BN) particles were functionalized with vinyl-trimethoxysilane (VTMS) and incorporated into a hybrid polymer (ORMOCER®) resin. The thermal conductivity and mechanical properties of the resulting composite were compared to materials prepared using unmodified particles. Results indicate that the chemical bonding between grain surface and ORMOCER® matrix has a pronounced effect on the final performance of the respective compounds.
The surface of BN particles was functionalized prior to their incorporation into a hybrid polymer (ORMOCER®) matrix, thermal, electrical and mechanical properties of the resulting composites were characterized.
  相似文献   

10.
Barium zirconium titanate (Ba(Zr x Ti1?x)O3, BZT) super smooth thin films are synthesized through modified sol-gel dip coating route on fluorine-doped tin oxide substrates with a suitably low calcination temperature. The Fourier tranformed infrared spectroscopy proves that impurities and starting materials are completely removed in the calcination process. Crystallographic phases of the samples are identified by the X-ray diffractometry and confirms that all samples are crystallized into a single perovskite phase. Introducing zirconium into the structure causes a reduction in dielectric constant of barium titanate. The optical properties of the films are also investigated. The results indicate that all samples are highly transparent and zirconium reduces the absorption coefficient. Moreover, the band gap energy of barium titanate increases when doped with zirconium and the highest band gap energy of about 3.71?eV along with the lowest dielectric constant of 850 at frequency of 100?kHz are obtained in 15 at.% zirconium-doped sample.  相似文献   

11.
Herein, the catalytic properties of the cerium (IV) salt, cerium (IV)-sandwiched polyoxometalate (POM) and cerium (IV)-sandwiched polyoxometalate intercalated in layered double hydroxides (LDHs) in the H2O2-based green oxidation reactions have been evaluated. These cerium (IV)-based systems were applied as homogeneous and heterogeneous catalysts for the oxidation of pyridines. Despite the fact that the cerium (IV)-sandwiched polyoxometalate as a homogeneous reaction system gives good results, there are some disadvantages in recovery and reusability process. To overcome these problems, new nano catalyst was synthesized by intercalation of the Cerium (IV)-sandwiched polyoxometalate into tris(hydroxymethyl) aminomethane-modified layered double hydroxides (Tris-LDH-CO3). The as-prepared nanocomposite was characterized and used as an effective heterogeneous catalyst for the oxidation of pyridines under mild conditions in the presence of H2O2 as an oxidant. The new heterogeneous nanocomposite can be recovered and reused easily from the reaction media at least ten times without significant decrease in catalytic activity.  相似文献   

12.
Yao  Lili  Sun  Yu  Weng  Wenjian  Lin  Jun  Cheng  Kui 《Journal of Sol-Gel Science and Technology》2018,86(2):459-467

In the present study, TiO2/ZnO composite nanodot films were prepared and the effects of Zn incorporation on light-induced cell detachment were investigated. The nanodots films, which were successfully synthesized by phase-separation-induced self-assembly method, were characterized on the morphology, composition, microstructure, and other properties, and evaluated on cell compatibility and cell detachment performances as well. Live-dead staining was used to study the viability of cell sheet detached by light illumination. Results shows that with the increasing of introduced Zn, the band gap widened and the absorbance in UV region increased, while the crystallinity and performance of light-induced hydrophilicity weakened. All the nanodots films showed good cell compatibility and cell detachment performance induced by light. The nanodots film which had a Zn/Ti molar ratio of 0.03 showed the highest detachment ratio of 91.0% after 20?min ultraviolet illumination. The prepared TiO2/ZnO composite nanodots films could be helpful in optimizing light-induced cell detachment behavior.

  相似文献   

13.
The mesoporous silica samples with different concentrations of phosphonic acid groups on the surface were obtained by direct template synthesis. The block-copolymer Pluronic P123 was used as a template, and sodium meta-silicate with diethylphosphatoethyltriethoxysilane as precursors. According to the SAXS diffractograms, mesoporous silica samples have a p6mm hexagonal symmetry. In addition, we used sol–gel method to synthesize xerogel with the same groups for comparison. All samples possess high values of specific surface area 615–730?m2/g and sorption pore volume. FTIR and potentiometric titration methods were used to investigate the surface layer of these samples. Sorption properties of the samples with phosphonic acid groups were studied in respect to a row of metal cations, among which we focused on lead(II), cadmium(II), and dysprosium(III) cations.  相似文献   

14.
The simple and effective synthesis of well-defined organosilica hollow nanospheres (OHNSs) for fundamental research and practical applications is still a significant challenge. In this work, a facile “cationic surfactant-induced selective etching” strategy was developed for the fabrication of hollow thiocyanatopropyl silsesquioxanes (thiocyanatopropyl-SQ), mercaptopropyl silsesquioxane (mercaptopropyl-SQ) from cyanoethyl-SQ@thiocyanatopropyl-SQ and cyanoethyl-SQ@mercaptopropyl-SQ, respectively. The experiments demonstrated that cetyltrimethylammonium bromide (CTAB) had remarkable influence on the formation of hollow structure and could accelerate the etching process significantly. A formation mechanism initiated by the adsorption of cationic surfactant followed by the etching of inner core with NH3·H2O was proposed. Hollow thiocyanatopropyl-SQ and mercaptopropyl-SQ with various shell thickness could be prepared by manipulating the amount of CTAB. And large-scale OHNSs were obtained at appropriate concentration of CTAB through this strategy. Moreover, this strategy might be further extended to fabricate OHNSs with other worthy functional groups.  相似文献   

15.
Systematic studies of silica gels with covalently immobilized thiosemicarbazide and formazan groups under the conditions of competitive sorption from multicomponent systems were conducted. A methodological approach to determine the selectivity of the modified sorption material with regard to Cu(II), Ni(II), Co(II), Cd(II), and Zn(II) was proposed. Solid-phase extraction in equilibrium conditions of Cu(II), Zn(II), Co(II), Cd(II), and Ni(II) on a silica gel with covalently immobilized thiosemicarbazide and formazan groups in the conditions of competitive sorption was studied. The possibility to use the pseudo-second-order kinetic equation for assessment of mutual influence at competitive sorption has been shown. We found that sorption from multicomponent solutions proceeds as a non-additive process under the conditions of an excess of functional groups.  相似文献   

16.
Degradation of three different endocrine disruptors (EDs) was thoroughly studied on prepared durable thin layers of titanium dioxide with an anatase crystalline structure. Specially constructed laboratory reactors bringing information on all individual processes (photolysis, photocatalysis, sorption) involved in decomposition of the studied EDs (17α-ethynylestradiol, bisphenol A and 4-nonylphenol) were applied. It was found that photolytic removal of EDs is the fastest degradation process; nevertheless, this method may be less effective regarding all indicators including toxicity. It was verified that individual degradation processes (photolysis and photocatalysis) showed a significantly different influence on toxicity of resulting solutions. During the photolytic process, EDs degradation caused increasing toxicity contrary to the photocatalytic process. Obtained results were corroborated by a mathematical model, which showed that a limitation step for photocatalysis is a sorption and for photolysis a toxicity of resulting products.  相似文献   

17.
ZrC–ZrO2 composite ceramic microspheres were prepared by internal gelation combined with carbothermic reduction using fructose as a chelating agent and carbon source. Fructose in the precursor solution formed complex with zirconium ions, which was conducive to the refining of the microstructure of the sintered composite. ZrC–ZrO2 composite with ZrC content as high as 60?wt% could be prepared.
In this paper, fructose was used as a chelating agent and an organic carbon source to prepare ZrCO microspheres by internal gelation and carbothermic reduction. The fructose in the precursor solution could form complex with zirconium ions, which was conducive to the refining of the microstructure of the sintered composite. ZrC–ZrO2 composite with crystal size of ZrO2 and ZrC in nanometer range and ZrC content as high as 60?wt% could be successfully prepared.
  相似文献   

18.
For the first time, sintered alumina with high transparency in mid infrared region, composed of submicron grains, has been fabricated using sol–gel processing. Commercially available boehmite powder was used to prepare the stable sol. The sol was mixed with appropriate amount of sintering aids and alumina seeds. The sol was further gelled, dried, and heat treated at 1000?°C for producing alumina powder. The powder was further shaped into pellets by compaction and sintered at temperatures between 1200 and 1400?°C in air. Sintered samples were further pressed hot isostatically to produce sintered submicron transparent alumina. The synthesized powder was characterized for its morphology and phase. The sintered and hot isostatically pressed samples were characterized for their physical, mechanical, and optical properties. The present method produced transparent alumina with transparency upto 87% in mid-wave infrared region. These transparency values were at par with the transparency of single crystal sapphire in the mid-wave infrared region and the hardness values were even superior than sapphire.  相似文献   

19.
In this work, sol–gel-based non-stick ceramic coating formulations were prepared and coated onto aluminum panels in order to investigate their surface properties. The effect of the addition of optimal amount of fluorine-containing silane compound (FAS) on the surface and adhesion properties were also investigated. The morphology, structure, and elemental chemical composition of the coatings were characterized by scanning electron microscopy, atomic force microscopy (AFM), energy dispersion spectrum (SEM/EDAX), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS), respectively. Moreover, several properties of the coatings such as cross-cut adhesion, hardness, gloss, and contact angle (CA) were determined. When fluorine was introduced, the pencil hardness was increased to 6H. Fluorinated non-stick ceramic coatings were found to have good adhesion on the aluminum substrates.  相似文献   

20.
A series of LaMnO3 perovskites as catalysts for selective reduction of NO by CO were synthesized using microwave and ultrasound assisted sol-gel method. The catalysts were characterized by BET area measurements, Scanning Electron Microscopy (SEM), X-Ray diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS) techniques. XRD results showed revealed the orthorhobic crystalline structure and with very high purity. SEM analyses proved lower particle size for ultrasound (US) assisted synthesized LaMnO3. In addition, US assisted synthesized LaMnO3 presented higher surface area respect to other catalysts, synthesized by the other methods. Results revealed that the ultrasound assisted synthesized catalyst determines the lowest crystallite size, the highest surface area and the highest concentration of O-vacancies and, as a consequence, the highest catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号