首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The paper is about a nearest-neighbor hard-core model, with fugacity λ>0, on a homogeneous Cayley tree of order k(with k+1 neighbors). This model arises as as a simple example of a loss network with a nearest-neighbor exclusion. We focus on Gibbs measures for the hard core model, in particular on ‘splitting’ Gibbs measures generating a Markov chain along each path on the tree. In this model, ?λ>0 and k≥1, there exists a unique translation-invariant splitting Gibbs measure μ*. Define λc=1/(k?1)×(k/(k?1)) k . Then: (i) for λ≤λc, the Gibbs measure is unique (and coincides with the above measure μ*), (ii) for λ>λc, in addition to μ*, there exist two distinct translation-periodic measures, μ+and μ?, taken to each other by the unit space shift. Measures μ+and μ?are extreme ?λ>λc. We also construct a continuum of distinct, extreme, non-translational-invariant, splitting Gibbs measures. For $\lambda >1/(\sqrt k - 1) \times (\sqrt k /\sqrt k - 1))^k $ , measure μ*is not extreme (this result can be improved). Finally, we consider a model with two fugacities, λeand λo, for even and odd sites. We discuss open problems and state several related conjectures.  相似文献   

2.
Handcuffed designs are a particular case of block designs on graphs. A handcuffed design with parametersv, k, λ consists of a system of orderedk-subsets of av-set, called handcuffed blocks. In a block {A 1,A 2,?, A k } each element is assumed to be handcuffed to its neighbours and the block containsk ? 1 handcuffed pairs (A 1,A 2), (A 2,A 3), ? (A k?1,A k ). These pairs are considered unordered. The collection of handcuffed blocks constitute a hundcuffed design if the following are satisfied: (1) each element of thev-set appears amongst the blocks the same number of times (and at most once in a block) and (2) each pair of distinct elements of thev-set are handcuffed in exactly λ of the blocks. If the total number of blocks isb and each element appears inr blocks the following conditions are necessary for the handcuffed design to exist:
  1. λv(v?1) = (k?1) b,
  2. rv = kb.
We denote byH(v, k, λ) the class of all handcuffed designs with parametersv, k, λ and sayH (v, k, λ) exists if there is a design with parametersv, k, λ. In this paper we prove that the necessary conditions forH (v, k, λ) exist are also sufficient in the following cases: (a)λ = 1 or 2; (b)k = 3; (c)k is evenk = 2h, and (λ, 2h ? 1) = 1; (d)k is odd,k = 2h + 1, and (λ, 4h)=2 or (λ, 4h)=1.  相似文献   

3.
In this article we study the abstract two parameter eigenvalue problem $$\begin{gathered} T_1 u_1 = \left( {\lambda _1 V_{11} + \lambda _2 V_{12} } \right)u_1 , \left\| {u_1 } \right\| = 1 \hfill \\ T_2 u_2 = \left( {\lambda _1 V_{21} + \lambda _2 V_{22} } \right)u_2 , \left\| {u_2 } \right\| = 1 \hfill \\ \end{gathered}$$ where, in the Hilbert spaces Hj, Tj is self-adjoint, bounded below and has compact resolvent, and Vjk are self-adjoint bounded operators, (?1)j+kVjk >> 0, j, k = 1, 2. An eigenvalue λ for this problem is a point in R2 satisfying both equations. Under appropriate conditions, the eigenvalues λn = (λ1 n, λ2 n) are countable and in R2. We aim to describe the set of limit points of λn/∥λn∥, as ∥λn∥ → ∞, in terms of the Vjk.  相似文献   

4.
Let A be an n×n matrix with eigenvalues λ1,λ2,…,λn, and let m be an integer satisfying rank(A)?m?n. If A is real, the best possible lower bound for its spectral radius in terms of m, trA and trA2 is obtained. If A is any complex matrix, two lower bounds for are compared, and furthermore a new lower bound for the spectral radius is given only in terms of trA,trA2,‖A‖,‖AA-AA‖,n and m.  相似文献   

5.
We consider the Sturm–Liouville operator generated in the space L 2[0,+∞) by the expression l a,b:= ?d 2/dx 2 +x+(x?b) and the boundary condition y(0) = 0. We prove that the eigenvalues λ n of this operator satisfy the inequalities λ1 0 < λ1 < λ2 0 and λn 0 ≤ λn < λn+1 0, n = 2, 3,..., where {?λn 0} is the sequence of zeros of the Airy function Ai (λ). We find the asymptotics of λn as n → +∞ depending on the parameters a and b.  相似文献   

6.
We consider the spectral decomposition of A, the generator of a polynomially bounded n-times integrated group whose spectrum set $\sigma(A)=\{i\lambda_{k};k\in\mathbb{\mathbb{Z}}^{*}\}We consider the spectral decomposition of A, the generator of a polynomially bounded n-times integrated group whose spectrum set s(A)={ilk;k ? \mathbb\mathbbZ*}\sigma(A)=\{i\lambda_{k};k\in\mathbb{\mathbb{Z}}^{*}\} is discrete and satisfies ?\frac1|lk|ldkn < ¥\sum \frac{1}{|\lambda_{k}|^{\ell}\delta_{k}^{n}}<\infty , where is a nonnegative integer and dk=min(\frac|lk+1-lk|2,\frac|lk-1-lk|2)\delta _{k}=\min(\frac{|\lambda_{k+1}-\lambda _{k}|}{2},\frac{|\lambda _{k-1}-\lambda _{k}|}{2}) . In this case, Theorem 3, we show by using Gelfand’s Theorem that there exists a family of projectors (Pk)k ? \mathbb\mathbbZ*(P_{k})_{k\in\mathbb{\mathbb{Z}}^{*}} such that, for any xD(A n+ ), the decomposition ∑P k x=x holds.  相似文献   

7.
Let us denote by R(k, ? λ)[R(k, ? λ)] the maximal number M such that there exist M different permutations of the set {1,…, k} such that any two of them have at least λ (at most λ, respectively) common positions. We prove the inequalities R(k, ? λ) ? kR(k ? 1, ? λ ? 1), R(k, ? λ) ? R(k, ? λ ? 1) ? k!, R(k, ? λ) ? kR(k ? 1, ? λ ? 1). We show: R(k, ? k ? 2) = 2, R(k, ? 1) = (k ? 1)!, R(pm, ? 2) = (pm ? 2)!, R(pm + 1, ? 3) = (pm ? 2)!, R(k, ? k ? 3) = k!2, R(k, ? 0) = k, R(pm, ? 1) = pm(pm ? 1), R(pm + 1, ? 2) = (pm + 1)pm(pm ? 1). The exact value of R(k, ? λ) is determined whenever k ? k0(k ? λ); we conjecture that R(k, ? λ) = (k ? λ)! for k ? k0(λ). Bounds for the general case are given and are used to determine that the minimum of |R(k, ? λ) ? R(k, ? λ)| is attained for λ = (k2) + O(klog k).  相似文献   

8.
For a sequence A = {Ak} of finite subsets of N we introduce: δ(A) = infm?nA(m)2n, d(A) = lim infn→∞ A(n)2n, where A(m) is the number of subsets Ak ? {1, 2, …, m}.The collection of all subsets of {1, …, n} together with the operation a ∪ b, (a ∩ b), (a 1 b = a ∪ b ? a ∩ b) constitutes a finite semi-group N (semi-group N) (group N1). For N, N we prove analogues of the Erdös-Landau theorem: δ(A+B) ? δ(A)(1+(2λ)?1(1?δ(A>))), where B is a base of N of the average order λ. We prove for N, N, N1 analogues of Schnirelmann's theorem (that δ(A) + δ(B) > 1 implies δ(A + B) = 1) and the inequalities λ ? 2h, where h is the order of the base.We introduce the concept of divisibility of subsets: a|b if b is a continuation of a. We prove an analog of the Davenport-Erdös theorem: if d(A) > 0, then there exists an infinite sequence {Akr}, where Akr | Akr+1 for r = 1, 2, …. In Section 6 we consider for N∪, N∩, N1 analogues of Rohrbach inequality: 2n ? g(n) ? 2n, where g(n) = min k over the subsets {a1 < … < ak} ? {0, 1, 2, …, n}, such that every m? {0, 1, 2, …, n} can be expressed as m = ai + aj.Pour une série A = {Ak} de sous-ensembles finis de N on introduit les densités: δ(A) = infm?nA(m)2m, d(A) = lim infn→∞ A(n)2nA(m) est le nombre d'ensembles Ak ? {1, 2, …, m}. L'ensemble de toutes les parties de {1, 2, …, n} devient, pour les opérations a ∪ b, a ∩ b, a 1 b = a ∪ b ? a ∩ b, un semi-groupe fini N, N ou un groupe N1 respectivement. Pour N, N on démontre l'analogue du théorème de Erdös-Landau: δ(A + B) ? δ(A)(1 + (2λ)?1(1?δ(A))), où B est une base de N d'ordre moyen λ. On démontre pour N, N, N1 l'analogue du théorème de Schnirelmann (si δ(A) + δ(B) > 1, alors δ(A + B) = 1) et les inégalités λ ? 2h, où h est l'ordre de base. On introduit le rapport de divisibilité des enembles: a|b, si b est une continuation de a. On démontre l'analogue du théorème de Davenport-Erdös: si d(A) > 0, alors il existe une sous-série infinie {Akr}, où Akr|Akr+1, pour r = 1, 2, … . Dans le Paragraphe 6 on envisage pour N, N, N1 les analogues de l'inégalité de Rohrbach: 2n ? g(n) ? 2n, où g(n) = min k pour les ensembles {a1 < … < ak} ? {0, 1, 2, …, n} tels que pour tout m? {0, 1, 2, …, n} on a m = ai + aj.  相似文献   

9.
An = An(?) denotes the unique left distributive binary system on {0, 1,…,2n?1) that satisfies a ? 1 = a + 1 mod 2nfor all a ? An, and on(a) = k indicates the period 2kof a ? An (if b,c ? An, then a ? b = a ? c iff b ‵ c mod 2kand if 0 < b < c < 2kthen a < a ? b < a ? c). Amongs others, we prove that ot2(2t?2) ≤ t holds for every integer t ≥ 2, the equality taking place iff t is of the form 22? for an integer s ≥ 0.  相似文献   

10.
In 1975, Richard M. Wilson proved: Given any positive integers k ? 3 and λ, there exists a constant v0 = v0(k, λ) such that v ? B(k,λ) for every integer v ? v0 that satisfies λ(v ? 1) ≡ 0(mod k ? 1) and λv(v ? 1) ≡ 0[mod k(k ? 1)]. The proof given by Wilson does not provide an explicit value of v0. We try to find such a value v0(k, λ). In this article we consider the case λ = 1 and v ≡ 1[mod k(k ? 1)]. We show that: if k ? 3 and v = 1[mod k(k ? 1)] where v > kkk5, then a B(v,k, 1) exists. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
Let λ={λ k n } be a triangular method of summation,f ε Lp (1 ≤ p ≤ ∞), $$U_n (f,x,\lambda ) = \frac{{a_0 }}{2} + \sum _{k = 1}^n \lambda _k^n (a_k \cos kx + b_k \sin kx).$$ Consideration is given to the problem of estimating the deviations ∥f ? Un (f, λ) ∥ Lp in terms of a best approximation En (f) Lp in abstract form (for a sequence of projectors in a Banach space). Various generalizations of known inequalities are obtained.  相似文献   

12.
A necessary and sufficient condition that a densely defined linear operator A in a sequentially complete locally convex space X be the infinitesimal generator of a quasi-equicontinuous C0-semigroup on X is that there exist a real number β ? 0 such that, for each λ > β, the resolvent (λI ? A)?1 exists and the family {(λ ? β)k(λI ? A)?k; λ > β, k = 0, 1, 2,…} is equicontinuous. In this case all resolvents (λI ? A)?1, λ > β, of the given operator A and all exponentials exp(tA), t ? 0, of the operator A belong to a Banach algebra Bг(X) which is a subspace of the space L(X) of all continuous linear operators on X, and, for each t ? 0 and for each x?X, one has limkz (I ? k?1tA)?kx = exp(tA) x. A perturbation theorem for the infinitesimal generator of a quasi-equicontinuous C0-semigroup by an operator which is an element of Bг(X) is obtained.  相似文献   

13.
For k ≥ 2, the k-generalized Fibonacci sequence (F n (k) ) n is defined by the initial values 0, 0, …, 0,1 (k terms) and such that each term afterwards is the sum of the k preceding terms. In 2005, Noe and Post conjectured that the only solutions of Diophantine equation F m (k) = F n (?) , with ? > k > 1, n > ? + 1, m > k + 1 are $(m,n,\ell ,k) = (7,6,3,2)and(12,11,7,3)$ . In this paper, we confirm this conjecture.  相似文献   

14.
It is shown that if A?Ωn?{Jn} satisfies
nkσk(A)?(n?k+1)2 σk?1(A)
(k=1,2,…,n)
, where σk(A) denotes the sum of all kth order subpermanent of A, then Per[λJn+(1?λ)A] is strictly decreasing in the interval 0<λ<1.  相似文献   

15.
Following a conjecture of P. Erdös, we show that if F is a family of k-subsets of and n-set no two of which intersect in exactly l elements then for k ? 2l + 2 and n sufficiently large |F| ? (k ? l ? 1n ? l ? 1) with equality holding if and only if F consists of all the k-sets containing a fixed (l + 1)-set. In general we show |F| ? dknmax;{;l,k ? l ? 1};, where dk is a constant depending only on k. These results are special cases of more general theorems (Theorem 2.1–2.3).  相似文献   

16.
In this paper we discuss the problem of determining a T-periodic solution x1(·, λ) of the differential equation x = A(t)x + f(t, x, λ) + b(t), where the perturbation parameter λ is a vector in a parameter-space Rk. The customary approach assumes that λ = λ(?), ??R. One then establishes the existence of an ?0 > 0 such that the differential equation has a T-periodic solution x1(·, λ(?)) for all ? satisfying 0 < ? < ?0. More specifically it is usually assumed that λ(?) has the form λ(?) = 0 where λ0 is a fixed vector in Rk. This means that attention is confined in the perturbation procedure to examining the dependence of x1(·, λ) on λ as λ varies along a line segment terminating at the origin in the parameter-space Rk. The results established here generalize this previous work by allowing one to study the dependence of x1(·, λ) on λ as λ varies through a “conical-horn” whose vertex rests at the origin in Rk. In the process an implicit-function formula is developed which is of some interest in its own right.  相似文献   

17.
Consider an exponential familyP λ which is maximal, smooth, and has uniformly bounded standardized fourth moments. Consider a sequenceX 1,X 2,... of i.i.d. random variables with parameter λ. LetQ nsk be the law ofX 1,...,X k given thatS n=X 1+...+X n=s. Choose λ so thatE λ(X 1)=s/n. Ifk andn→∞ butk/n→0, then $$\parallel Q_{nsk} - P_\lambda ^k \parallel = \gamma \frac{k}{n} + o\left( {\frac{k}{n}} \right)$$ where γ=1/2E{|1?Z 2|} andZ isN(0,1). The error term is uniform ins, the value ofS n. Similar results are given fork/n→θ and for mixtures of theP λ k . Versions of de Finetti's theorem follow.  相似文献   

18.
On λ-designs     
A λ-design is a system of subsets S1, S2,…, Sn from an n-set S, n > 3, where |SiSj| = λ for ij, |Sj| = kj > λ > 0, and not all kj, are equal. Ryser [9] and Woodall [101 have shown that each element of S occurs either r1, or r2 times (r1r2) among the sets S1,…, Sn and r1 +r2 = n + 1. Here we: (i) mention most of what is currently known about λ-designs; (ii) provide simpler proofs of some known results; (iii) present several new general theorems; and (iv) apply our theorems and techniques to the calculation of all λ-designs for λ ? 5. In fact, this calculation has been done for all λ ?/ 9 and is available from the author.  相似文献   

19.
In an earlier paper [1] the notion of the so-called 〈?, GLJ>-absolutely monotonie functions was introduced, where ?≧1, {λk k=0 is an arbitrary non-increasing sequence of positive numbers. It was found that the condition \(\sum\limits_{\lambda _{k > 0} } {\lambda _k^{ - 1} } = + \infty \) is necessary in order to have the series expansion for any function f(x)∈〈?, λj). HereL k/? f/(x) are special integro-differential operators of fractional order, is a system of functions associated with the Mittag-Leffler type functions \(E_\varrho (z;\mu ) = \sum\limits_{k = 0}^\infty {z^n /\Gamma (\mu + \kappa /\varrho )} \) and with the sequence {λk}. In the present paper it is proved (in particular, see Theorem 3.2) that the expansion (*) is valid almost everywhere on (0,l) if ∑ λ k ?1 =+∞. This result contains, as a special case (when ?=1 and λk=0,k≧0) the known theorem of S. N. Bernstein on absolutely monotonic functions.  相似文献   

20.
The incidence matrix of a (υ, k, λ)-design is a (0, 1)-matrix A of order υ that satisfies the matrix equation AAT=(k?λ)I+λJ, where AT denotes the transpose of the matrix A, I is the identity matrix of order υ, J is the matrix of 1's of order υ, and υ, k, λ are integers such that 0<λ<k<υ?1. This matrix equation along with various modifications and generalizations has been extensively studied over many years. The theory presents an intriguing joining together of combinatorics, number theory, and matrix theory. We survey a portion of the recent literature. We discuss such varied topics as integral solutions, completion theorems, and λ-designs. We also discuss related topics such as Hadamard matrices and finite projective planes. Throughout the discussion we mention a number of basic problems that remain unsolved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号