首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sequential hydration energies and entropies with up to four water molecules were obtained for MXM(+) = NaFNa(+), NaClNa(+), NaBrNa(+), NaINa(+), NaNO(2)Na(+), NaNO(3)Na(+), KFK(+), KBrK(+), KIK(+), RbIRb(+), CsICs(+), NH(4)BrNH(4)(+), and NH(4)INH(4)(+) from the hydration equilibria in the gas phase with a reaction chamber attached to a mass spectrometer. The MXM(+) ions as well as (MX)(m)M(+) and higher charged ions such as (MX)(m)M(2)(2+) were obtained with electrospray. The observed trends of the hydration energies of MXM(+) with changing positive ion M(+) or the negative ion X(-) could be rationalized on the basis of simple electrostatics. The most important contribution to the (MXM-OH(2))(+) bond is the interaction of the permanent and induced dipole of water with the positive charge of the nearest-neighbor M(+) ion. The repulsion due to the water dipole and the more distant X(-) has a much smaller effect. Therefore, the bonding in (MXM-OH(2))(+) for constant M and different X ions changes very little. Similarly, for constant X and different M, the bonding follows the hydration energy trends observed for the naked M(+) ions. The sequential hydration bond energies for MXM(H(2)O)(n)(+) decrease with n in pairs, where for n = 1 and n = 2 the values are almost equal, followed by a drop in the values for n = 3 and n = 4, that again are almost equal. The hydration energies of (MX)(m)M(+) decrease with m. The mass spectra with NaCl, obtained with electrospray and observed in the absence of water vapor, show peaks of unusually high intensities (magic numbers) at m = 4, 13, and 22. Experiments with variable electrical potentials in the mass spectrometer interface showed that some but not all of the ion intensity differentiation leading to magic numbers is due to collision-induced decomposition of higher mass M(MX)(m)(+) and M(2)(MX)(m)(2+) ions in the interface. However, considerable magic character is retained in the absence of excitation. This result indicates that the magic ions are present also in the saturated solution of the droplets produced by electrospray and are thus representative of particularly stable nanocrystals in the saturated solution. Hydration equilibrium determinations in the gas phase demonstrated weaker hydration of the magic ion (NaCl)(4)Na(+).  相似文献   

2.
Off-site detection of the hydrolysed products of sulfur mustards in aqueous samples is an important task in the verification of Chemical Weapons Convention (CWC)-related chemicals. The hydrolysed products of sulfur mustards are studied under positive and negative electrospray ionisation (ESI) conditions using an additive with a view to detecting them at trace levels. In the presence of cations (Li(+), Na(+), K(+) and NH(4) (+)), the positive ion ESI mass spectra of all the compounds include the corresponding cationised species; however, only the [M+NH(4)](+) ions form [M+H](+) ions upon decomposition. The tandem mass (MS/MS) spectra of [M+H](+) ions from all the hydrolysed products of the sulfur mustard homologues were distinct and allowed these compounds to be characterised unambiguously. Similarly, the negative ion ESI mass spectra of all the compounds show prominent adducts with added anions (F(-), Cl(-), Br(-), and I(-)), but the [M-H](-) ion can only be generated by decomposition of an [M+F](-) ion. The MS/MS spectra of the [M-H](-) ions from all the compounds result in a common product ion at m/z 77. A precursor ion scan of m/z 77 is shown to be useful in the rapid screening of these compounds in aqueous samples at trace levels, even in the presence of complex masking agents, without the use of time-consuming sample preparation and chromatography steps. An MS/MS method developed to measure the detection limits of the hydrolysed products of sulfur mustards found these to be in the range of 10-500 ppb.  相似文献   

3.
The photoionization and photodissociation of L-valine are studied by tunable synchrotron vacuum ultraviolet photoionization mass spectrometry at the photon energy of 13 eV. The ionization energy of L-valine and the appearance energies of major fragments are measured by the photoionization efficiency spectrum in the photon energy range of 8-11 eV. Possible formation pathways of the major fragments, NH(2)CHC(OH)(2)(+) (m/z=75), NH(2)(CH(3))(2)(CH)(2)(+) (m/z=72) and NH(2)CHCO(+) (m/z=57), are discussed in detail with the theoretical calculations at the B3LYP/6-31++G (d, p) level. Hydrogen migration is considered as the key way for the formation of NH(2)CHC(OH)(2)(+) (m/z=75) and NH(2)CHCO(+) (m/z=57). Furthermore, other fragments, NH(2)CHCOOH(+) (m/z=74), (CH(3))(2)(CH)(2)(+) (m/z=56), C(4)H(7)(+) (m/z=55), NH(2)CHOH(+) (m/z=46), NH(2)CH(2)(+) (m/z=30) and m/z=18, species are also briefly described.  相似文献   

4.
Inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) was used for the accurate determination of copper in coal fly ash samples in the presence of excess titanium, using the reaction of Cu(+) ions with NH(3) in the cell. The method eliminated the effect of polyatomic isobaric interferences at m/z 63 and 65 caused by the formation of (47)Ti(16)O(+), (49)Ti(16)O(+) and (47)Ti(18)O(+) on (63)Cu(+) and (65)Cu(+) by detecting Cu(+) as the product cluster ion Cu(NH(3))(2)(+). As the signal of (63)Cu(NH(3))(2)(+) overlapped with that of (97)Mo(+) which existed in the samples, (65)Cu(NH(3))(2)(+) was detected at m/z 99. The effect of the operating conditions of DRC system was studied in order to obtain the best signal to noise ratio for Cu(NH(3))(2)(+) at m/z 99. The formation of Cu(NH(3))(2)(+) was through the clustering reaction Cu(+)+2NH(3)-->Cu(NH(3))(2)(+) which resulted in the separation of analyte from the interfering oxide. The detection limit for Cu(NH(3))(2)(+) was 0.015 ng mL(-1) as Cu. The method was applied to the determination of copper in NIST SRM 1633a and 1633b coal fly ash reference materials. The precision between sample replicates was better than 2.0% and the analysis results were in good agreement with the certified values.  相似文献   

5.
A convenient method for distinguishing underivatized isomeric monosaccharides has been established using electrospray ionization ion trap mass spectrometry (ESI-ITMS). Mass spectra of hexoses (glucose, galactose, and mannose), N-acetylhexosamines (N-acetylglucosamine, N-acetylgalactosamine, and N-acetylmannosamine) and hexosamines (glucosamine, galactosamine, and mannosamine) dissolved in solvent containing 1 mM ammonium acetate were obtained in the positive ion mode. Glucose was distinguished from galactose and mannose in the MS(2) spectrum of the [M+NH(4)](+) ion at m/z 198. The MS(3) spectra generated from [M+NH(4)-H(2)O-NH(3)](+) at m/z 163 showed that galactose and mannose could be distinguished by the ratio of peak intensities at m/z 145 and 127, while the three N-acetylhexosamine and hexosamine stereochemical isomers could be identified by the relative abundance ratios of product ions observed in MS(3) spectra. The investigation of MS and MS(2) spectra from complexes of these monosaccharides with Na(+) and Pb(2+) failed to distinguish these monosaccharide isomers. Therefore, multiple stage mass analysis by ESI-ITMS using either [M+NH(4)](+) or [M+H](+) was useful to distinguish between the isomers of monosaccharides.  相似文献   

6.
Electrospray ionization mass spectrometry of ginsenosides   总被引:1,自引:0,他引:1  
Ginsenosides R(b1), R(b2), R(c), R(d), R(e), R(f), R(g1), R(g2) and F(11) were studied systematically by electrospray ionization mass spectrometry in positive- and negative-ion modes with a mobile-phase additive, ammonium acetate. In general, ion sensitivities for the ginsenosides were greater in the negative-ion mode, but more structural information on the ginsenosides was obtained in the positive-ion mode. [M + H](+), [M + NH(4)](+), [M + Na](+) and [M + K](+) ions were observed for all of the ginsenosides studied, with the exception of R(f) and F(11), for which [M + NH(4)](+) ions were not observed. The signal intensities of [M + H](+), [M + NH(4)](+), [M + Na](+) and [M + K](+) ions varied with the cone voltage. The highest signal intensities for [M + H](+) and [M + NH(4)](+) ions were obtained at low cone voltage (15-30 V), whereas those for [M + Na](+) and [M + K](+) ions were obtained at relatively high cone voltage (70-90 V). Collision-induced dissociation yielded characteristic positively charged fragment ions at m/z 407, 425 and 443 for (20S)-protopanaxadiol, m/z 405, 423 and 441 for (20S)-protopanaxatriol and m/z 421, 439, 457 and 475 for (24R)-pseudoginsenoside F(11). Ginsenoside types were identified by these characteristic ions and the charged saccharide groups. Glycosidic bond cleavage and elimination of H(2)O were the two major fragmentation pathways observed in the product ion mass spectra of [M + H](+) and [M + NH(4)](+). In the product ion mass spectra of [M - H](-), the major fragmentation route observed was glycosidic bond cleavage. Adduct ions [M + 2AcO + Na](-), [M + AcO](-), [M - CH(2)O + AcO](-), [M + 2AcO](2-), [M - H + AcO](2-) and [M - 2H](2-) were observed at low cone voltage (15-30 V) only.  相似文献   

7.
The explosive triacetone triperoxide (TATP) has been analyzed by electrospray ionization mass spectrometry (ESI-MS) on a linear quadrupole instrument, giving a 62.5 ng limit of detection in full scan positive ion mode. In the ESI interface with no applied fragmentor voltage the m/z 245 [TATP + Na](+) ion was observed along with m/z 215 [TATP + Na - C(2)H(6)](+) and 81 [(CH(3))(2)CO + Na](+). When TATP was ionized by ESI with an applied fragmentor voltage of 75 V, ions at m/z 141 [C(4)H(6)O(4) + Na](+) and 172 [C(5)H(9)O(5) + Na](+) were also observed. When the precipitates formed in the synthesis of TATP were analyzed before the reaction was complete, a new series of ions was observed in which the ions were separated by 74 m/z units, with ions occurring at m/z 205, 279, 353, 427, 501, 575, 649 and 723. The series of evenly spaced ions is accounted for as oligomeric acetone carbonyl oxides terminated as hydroperoxides, [HOOC(CH(3))(2){OOC(CH(3))(2)}(n)OOH + Na](+) (n = 1, 2 ... 8). The ESI-MS spectra for this homologous series of oligoperoxides have previously been observed from the ozonolysis of tetramethylethylene at low temperatures. Precipitates from the incomplete reaction mixture, under an applied fragmentor voltage of 100 V in ESI, produced an additional ion observed at m/z 99 [C(2)H(4)O(3) + Na](+), and a set of ions separated by 74 m/z units occurring at m/z 173, 247, 321, 395, 469 and 543, proposed to correspond to [CH(3)CO{OOC(CH(3))(2)}(n)OOH + Na](+) (n = 1,2 ... 5). Support for the assigned structures was obtained through the analysis of both protiated and perdeuterated TATP samples.  相似文献   

8.
The selected ion flow tube (SIFT) technique has been used to investigate the ion-molecule reactions of several ions with the neutral molecules ethylene oxide, CH(2)OCH(2)-c, and propenal, CH(2)CHCHO. Both molecules have been identified in hot-core star forming regions [] and have significance to astrochemical models of the interstellar (ISM) and circumstellar medium (CSM). Moreover, the molecules contain functional groups, such as the epoxide group (ethylene oxide) and an aldehyde group, which are part of a conjugated pi-electron system (propenal) whose reactivities have not been studied in detail in gas-phase ion-molecule reactions. The larger recombination energy ions, Ar(+) and N(2)(+), were reacted with the neutrals to give insight into general fragmentation tendencies. These reactions proceeded via dissociative charge-transfer yielding major fragmentation products of CH(3)(+) and HCO(+) for ethylene oxide and CH(2)CH(+) and HCO(+) for propenal. The amino acids glycine and alanine are of particular interest to astrobiology, especially if they can be synthesized in the gas phase. In an attempt to synthesize amino acid precursors, ethylene oxide and propenal were reacted with NH(n)(+) (n = 1-4) and HCNH(+). As might be expected from the proton detachment energies, NH(+), NH(2)(+), and HCNH(+) reacted via proton transfer. NH(3)(+) reacted with each molecule via H-atom abstraction to produce NH(4)(+), and NH(4)(+) reacted via a ternary association. All binary reactions proceeded near the gas kinetic rate. Several associated molecule switching reactions were performed and implications of these reactions to the structures of the association products are discussed Ikeda et al. and Hollis et al.  相似文献   

9.
We report a solid-state multinuclear ((23)Na, (15)N, (13)C, and (31)P) NMR study on the relative affinity of monovalent cations for a stacking G-quartet structure formed by guanosine 5'-monophosphate (5'-GMP) self-association at pH 8. Two major types of cations are bound to the 5'-GMP structure: one at the surface and the other within the channel cavity between two G-quartets. The channel cation is coordinated to eight carbonyl oxygen atoms from the guanine bases, whereas the surface cation is close to the phosphate group and likely to be only partially hydrated. On the basis of solid-state (23)Na NMR results from a series of ion titration experiments, we have obtained quantitative thermodynamic parameters concerning the relative cation binding affinity for each of the two major binding sites. For the channel cavity site, the values of the free energy difference (Delta G degrees at 25 degrees C) for ion competition between M(+) and Na(+) ions are K(+) (-1.9 kcal mol(-1)), NH(4)(+) (-1.8 kcal mol(-1)), Rb(+) (-0.3 kcal mol(-1)), and Cs(+) (1.8 kcal mol(-1)). For the surface site, the values Delta G degrees are K(+) (2.5 kcal mol(-1)), NH(4)(+) (-1.3 kcal mol(-1)), Rb(+) (1.1 kcal mol(-1)), and Cs(+) (0.9 kcal mol(-1)). Solid-state NMR data suggest that the affinity of monovalent cations for the 5'-GMP structure follows the order NH(4)(+) > Na(+) > Cs(+) > Rb(+) > K(+) at the surface site and K(+) > NH(4)(+) > Rb(+) > Na(+) > Cs(+) > Li(+) at the channel cavity site. We have found that the cation-induced stability of a 5'-GMP structure is determined only by the affinity of monovalent cations for the channel site and that the binding of monovalent cations to phosphate groups plays no role in 5'-GMP self-ordered structure. We have demonstrated that solid-state (23)Na and (15)N NMR can be used simultaneously to provide mutually complementary information about competitive binding between Na(+) and NH(4)(+) ions.  相似文献   

10.
Unimolecular metastable decomposition of diethoxymethane (CH(2)(OCH(2)CH(3))(2), 1) upon electron impact has been investigated by means of mass-analyzed ion kinetic energy (MIKE) spectrometry and theD-labeling technique in conjunction with thermochemistry. The m/z 103 ion ([M - H](+) : CH(OCH(2)CH(3)) = O(+)CH(2)CH(3)) decomposes into the m/z 47 ion (protonated formic acid, CH(OH) = O(+)H) by consecutive losses of two C(2)H(4) molecules via an m/z 75 ion. The resulting product ion at m/z 47 further decomposes into the m/z 29 and 19 ions by losses of H(2)O and CO, respectively, via an 1,3-hydroxyl hydrogen transfer, accompanied by small kinetic energy release (KER) values of 1.3 and 18.8 meV, respectively. When these two elimination reactions are suppressed by a large isotope effect, however, another 1,1-H(2)O elimination with a large KER value (518 meV) is revealed. The m/z 89 ion ([M - CH(3)](+) : CH(2)(OCH(2)CH(3))O(+) = CH(2)) decomposes into the m/z 59 ion (CH(3)CH(2)O(+) = CH(2)) by losing CH(2)O in the metastable time window. The source-generated m/z 59 ion ([M - OCH(2)CH(3)](+) : CH(2) = O(+)CH(2)CH(3)) decomposes into the m/z 41 (CH(2) = CH(+)CH(2)) and m/z 31 (CH(2) = O(+)H) ions by losses of H(2)O and C(2)H(4), respectively, with considerable hydrogen scrambling prior to decomposition. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

11.
A series acetals/ketals of aldehydes and ketones formed by the reaction of two photolabile protecting groups, bis(2-nitrophenyl) ethanediol and bis(4,5-dimethoxy-2-nitrophenyl) ethanediol (I and II, respectively), were analysed under EI, LSIMS, ESI and APCI conditions to obtain molecular weights as well as structural information. The EI and LSIMS techniques failed to give molecular weight information. The positive ESI yielded [M + H](+) ions only for I; however, with added Na(+) both I and II formed [M + Na](+) adducts. But upon decomposition, the [M + Na](+) ions yielded Na(+) ion as the only product ion. Similarly, under negative ion ESI conditions both I and II gave molecular weight information by forming adduct ions with halide anions (F(-), Cl(-), Br(-) and I(-)); however, they did not give structural information as they resulted in only the halide anion as the abundant fragment ion upon dissociation. All the compounds formed abundant M(-*) ions under negative ion APCI conditions, and their MS/MS spectra showed characteristic fragment ions; hence the acetals/ketals of I and II could be successfully characterized under negative ion APCI conditions.  相似文献   

12.
Ab initio (HF, MP2, and CCSD(T)) and DFT (B3LYP) calculations were done in modeling the cation (H(+), Li(+), Na(+), K(+), Ca(2+), Mg(2+), NH(4)(+), and NMe(4)(+)) interaction with aromatic side chain motifs of four amino acids (viz., phenylalanine, tyrosine, tryptophan and histidine). As the metal ion approaches the pi-framework of the model systems, they form strongly bound cation-pi complexes, where the metal ion is symmetrically disposed with respect to all ring atoms. In contrast, proton prefers to bind covalently to one of the ring carbons. The NH(4)(+) and NMe(4)(+) ions have shown N-H...pi interaction and C-H...pi interaction with the aromatic motifs. The interaction energies of N-H...pi and C-H...pi complexes are higher than hydrogen bonding interactions; thus, the orientation of aromatic side chains in protein is effected in the presence of ammonium ions. However, the regioselectivity of metal ion complexation is controlled by the affinity of the site of attack. In the imidazole unit of histidine the ring nitrogen has much higher metal ion (as well as proton) affinity as compared to the pi-face, facilitating the in-plane complexation of the metal ions. The interaction energies increase in the order of 1-M < 2-M < 3-M < 4-M < 5-M for all the metal ion considered. Similarly, the complexation energies with the model systems decrease in the following order: Mg(2+) > Ca(2+) > Li(+) > Na(+) > K(+) congruent with NH(4)(+) > NMe(4)(+). The variation of the bond lengths and the extent of charge transfer upon complexation correlate well with the computed interaction energies.  相似文献   

13.
While developing a liquid chromatography/tandem mass spectrometry method for the analysis of the flavonoid quercitin, it was observed that quercetin (3,3',4',5,7-pentahydroxyflavone) exhibited clustering in both the positive and negative ion mode. Two series of positive ion clusters were observed; the first series corresponds to singly charged [2M + Na](+) at m/z 627.2 to [13M + Na](+) at m/z 3947.5, while the second series corresponds to doubly charged [7M + 2Na](2+) at m/z 1080.4 to [25M + 2Na](2+) at m/z 3798.5. In the negative ion mode, the behavior of quercetin parallels that of apigenin (4',5,7-trihydroxyflavone) in that [M + NO(3)](-), [2M + NO(3)](-), and [3M + NO(3)](-) were observed at m/z 364.1, 666.0, and 968.9, respectively; in addition, quercitin clusters with chloride ions ([2M + Cl](-) at m/z 638.9 and [3M + Cl](-) at m/z 940. 9) were observed. The results of tandem mass spectrometric examination of several cluster ions are reported.  相似文献   

14.
A series of meso-dialkyl, alkyl aryl and cycloalkyl calix(4)pyrroles (1-15) are studied under positive and negative ion electrospray ionization (ESI) conditions. The positive ion spectra show abundant [M + H](+) and [M + Na](+) ions and the negative ion spectra show the [M + Cl](-) (the Cl(-) ions from the solvent) and [M - H](-) ions. The collision induced dissociation (CID) spectra of [M + H](+), [M + Na](+), [M + Cl](-) and [M - H](-) ions are studied to understand their dissociation pathway and compared to that reported for M(+) under electron ionization (EI) conditions. The beta-cleavage process that was diagnostic to M(+) is absent in all the CID spectra of the ions studied under ESI. Dissociation of all the studied ions resulted in the fragment ions formed by sequential elimination of pyrrole (A) and/or dialkyl/alkyl aryl/cycloalkyl (B) groups involving hydrogen migration to pyrrole ring at each cleavage of A--B bond, which clearly reveals the arrangement of A and B groups in the calix(4)pyrroles. The source of hydrogen that migrates to pyrrole ring during A--B bond cleavage is investigated by the experiments on deuterated compounds and [M + D](+) ions; and confirmed that the hydrogen attached to pyrrole nitrogen, hydrogen on alpha-carbon of alkyl group and the H(+)/Na(+) ion that added during ESI process to generate [M + H](+)/[M + Na](+) ions involve in the migration. The yields of [M + Na](+) ions are found to be different for the isomeric meso-cycloalkyl compounds (cycloheptyl, and 2-, 3- and 4-methyl cyclohexyl) and for normal and N-confused calix(4)pyrroles. The isomeric methyl and 3-hydroxy/4-hydroxy phenyl calix(4)pyrroles show specific fragmentation pattern during the dissociation of their [M - H](-) ions.  相似文献   

15.
Helium nanodroplets are co-doped with C(60) and ammonia. Mass spectra obtained by electron ionization reveal cations containing ammonia clusters complexed with up to four C(60) units. The high mass resolution of Δm/m≈ 1/6000 makes it possible to separate the contributions of protonated, unprotonated and dehydrogenated ammonia. C(60) aggregates suppress the proton-transfer reaction which usually favors the appearance of protonated ammonia cluster ions. Unprotonated C(x)(NH(3))(n)(+) ions (x = 60, 120, 180) exceed the abundance of the corresponding protonated ions if n < 5; for larger values of n the abundances of C(60)(NH(3))(n)(+) and C(60)(NH)(n-1)NH(4)(+) become about equal. Dehydrogenated C(60)NH(2)(+) ions are relatively abundant; their formation is attributed to a transient doubly charged C(60)-ammonia complex which forms either by an Auger process or by Penning ionization following charge transfer between the primary He(+) ion and C(60). The abundance of C(x)NH(3)(+) and C(x)NH(4)(+) ions (x = 120 or 180) is one to two orders of magnitude weaker than the abundance of ions containing one or two additional ammonia molecules. However, a model involving evaporation of NH(3) or NH(4) from the presumably weakly bound C(x)NH(3)(+) and C(x)NH(4)(+) ions is at odds with the lack of enhancement in the abundance of C(120)(+) and C(180)(+). Mass spectra of C(60) dimers complexed with water complement a previous study of C(60)(H(2)O)(n)(+) recorded at much lower mass resolution.  相似文献   

16.
Chandra S  Buschbeck R  Lang H 《Talanta》2006,70(5):1087-1093
The synthesis of CH(2)CHCH(2)OCH(2)[15-crown-5] (III) is achieved by the treatment of HOCH(2)- [15-crown-5] (I) with equimolar amounts of CH(2)CHCH(2)Br (II) in the presence of KOH. The hydrosilylation of III with Si(CH(2)CH(2)CH(2)SiMe(2)H)(4) (IV) in the presence of the Karstedt catalyst affords the crown ether end-capped carbosilane dendrimer Si(CH(2)CH(2)CH(2)Si-Me(2)CH(2)CH(2)CH(2)OCH(2)[15-crown-5])(4) (V). PVC-based membranes of V as ionophore with sodium tetraphenyl borate (NaTPB) as anion excluder and dioctyl phthalate (DOP), diphenyl ether (DPE), dibutyl amine (DBA) and dibutyl phthalate (DBP) as plasticizing solvent mediators were prepared and investigated as NH(4)(+)-selective electrode. The response of the electrode was linear with a Nernstian slope of 53.3mV/decade over an NH(4)(+) ion concentration range of 7.60x10(-6) to 1.0x10(-1)M and a detection limit of 3.9x10(-6)M. The response time to achieve a steady potential for NH(4)(+) ions was between 6 and 10s, and the electrode is suitable for use within the pH range of 2.2-8.5. The selectivity relative to alkali, alkaline earth, and transition heavy metal ions is good. The newly developed ionophore showed higher NH(4)(+) selectivity over K(+) ( [Formula: see text] ) and Na(+) ( [Formula: see text] ). The electrode could be used for at least 45 days without considerable alteration in its potential. The electrode also shows a better working concentration range and slope in comparison to other NH(4)(+)-selective electrodes reported in literature.  相似文献   

17.
The reaction chemistry between dimethyl ether (DME) cations and polycyclic aromatic hydrocarbons (PAHs) was elucidated by isolating three different types of DME ions using a quadrupole ion trap and reacting them individually with neutral PAH molecules eluting from a gas chromatographic column. The results obtained show that the CH(2)OCH(3)(+) ion (m/z 45) reacts via adduct formation followed by elimination of CH(3)OH, the (CH(3))(2)OH(+) (m/z 47) ion serves as proton donor and the (CH(3))(3)O(+) ion (m/z 61) does not yield any reaction products. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   

18.
Matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) mass spectra of small kappa-carrageenans are reported and discussed. MALDI spectra can be obtained in both positive and negative ion mode. In the absence of extraneous metal ions, positive ions are formed by the attachment of one Na(+) ion to the carrageenan, whereas for negative ions one Na(+) ion is detached from the sulfate group. Multiply charged species are not observed in MALDI. Intense ESI spectra can be obtained in negative ion mode and now multiply charged species are seen. Alkali exchange experiments show that in these small carrageenan anions one, but only one, alkali metal ion is bound in a bidentate coordination with two ionic sulfate groups. G2-type ab initio calculations on model ions HO(-) [M(+)] (-)OH (M = Li, Na, K, Cs), as well as arguments based on a simple Coulombic interaction model, show that the bidentate stabilization energy drops rapidly as the size of the alkali cation increases. Exchange of Na(+) with Li(+) leads to expulsion of the Na(+) ion generating, in ESI, intense multiply charged anions. An attempt is made to rationalize this behavior in terms of hydration effects.  相似文献   

19.
A comprehensive study on the fragmentation pattern of the antimicrobial growth promoter avilamycin A was conducted in a quadrupole ion trap mass spectrometer equipped with an electrospray ionization (ESI) source. Performing multiple-stage experiments on the deprotonated molecule (m/z 1401) and its principal product ions showed that a sequential shortening of the oligosaccharide backbone took place, which can be attributed to the localization of the negative charge in the terminal dichloroisoeverninic acid. Under (+)-ESI conditions, avilamycin A readily formed an intense sodium-cationized molecule, [M + Na](+) (m/z 1425). Structural elucidation of the second-, third- and fourth-generation fragment ions revealed that all of the structures shared a common molecular portion comprising a central monosaccharide. This observation allowed us to assign confidently the complexation site of the alkali metal cation. In addition to the monosodiated molecule, the full-scan mass spectral acquisition also yielded a less abundant disodiated molecule, [M - H + 2Na](+) (m/z 1447). Multiple-stage experiments on this ion indicated that the second sodium ion compensates for the negative charge located at either of two positions within the molecule. While deprotonation of the phenolic hydroxyl group in the dichloroisoeverninic acid moiety was suggested to be driven by charge stabilization in the aromatic ring (in analogy with the deprotonated molecule in the (-)-ESI mode), the deprotonation at an alpha-carbon of an ester side-chain substituent in the oligosaccharide part was believed to provide a stable chelation-like coordination site for the cation.  相似文献   

20.
The third-order nonlinear optical (3NLO) activity of PbS quantum dots (QDs) encapsulated in zeolite Y has been expected to depend sensitively on the countercation of the zeolite host. However, ion exchange of the pristine countercation, H(+), with other cations has not been possible because the framework decomposes and the QDs aggregate immediately when the PbS QD-incorporating zeolite Y with H(+) as the countercation is exposed to the atmosphere. We now report that when H(+) is transformed to NH(4)(+), the framework of PbS QD-containing zeolite Y does not undergo decomposition and the PbS QDs do not undergo aggregation to form larger QDs during the aqueous ion exchange of NH(4)(+) with alkali-metal ions (M(A)(+) = Li, Na(+), K(+), Rb(+)). The 3NLO activity of the M(A)(+)-exchanged PbS QD-incorporating zeolite Y film increases with increasing size of M(A)(+). The stabilization of the surface-bound exciton by the electron-rich framework oxide and electron-poor cation is proposed to be responsible for the increase. This is the first example of a method for systematically increasing the 3NLO activity of QDs dispersed in a dielectric matrix by systematically changing its properties. These results will serve as a guideline for future research and also promote applications of QD-incorporating zeolites in various fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号