首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The coordination chemistries of the potential tetradentate ligands N,N'-bis(3,5-di-tert-butyl-2-hydroxyphenyl)ethylenediamine, H4[L1], the unsaturated analogue glyoxal-bis(2-hydroxy-3,5-di-tert-butylanil), H2[L2], and N,N'-bis(2-hydroxy-3,5-di-tert-butylphenyl)-2,2-dimethylpropylenediamine, H4[L3], have been investigated with nickel(II), palladium(II), and copper(II). The complexes prepared and characterized are [Ni(II)(H3L1)2] (1), [Ni(II)(HL2)2].5/8CH2Cl2 (2), [Ni(II)(L3**)] (3), [Pd(II)(L3**)][Pd(II)(H2L3) (4), and [Cu(II)(H2O)(L4)] (5), where (L4)2- is the oxidized diimine form of (L3)4- and (L3**)2- is the bis(o-iminosemiquinonate) diradical form of (L3)4-. The structures of compounds 1-5 have been determined by single crystal X-ray crystallography. In complexes 1 and 2, the ligands (H3L1)- and (HL2)- are tridentate and the nickel ions are in an octahedral ligand environment. The oxidation level of the ligands is that of an aromatic o-aminophenol. 1 and 2 are paramagnetic (mu(eff) approximately 3.2 mu(B) at 300 K), indicating an S = 1 ground state. The diamagnetic, square planar, four-coordinate complexes 3 and [Pd(II)(L3**)] in 4 each contain two antiferromagnetically coupled o-iminobenzosemiquinonate(1-) pi radicals. Diamagnetic [Pd(II)(H2L3)] in 4 forms an eclipsed dimer via four N-H.O hydrogen bonding contacts which yields a nonbonding Pd.Pd contact of 3.0846(4) A. Complex 5 contains a five-coordinate Cu(II) ion and two o-aminophenolate(1-) halves in (L4)2-. The electrochemistries of complexes 3 and 4a ([Pd(II)(L3**)] of 4) have been investigated, and the EPR spectra of the monocations and -anions are reported.  相似文献   

2.
The synergistic effect of Ni(II) and Co(II) on the sulfite induced autoxidation of Cu(II)/tetraglycine was investigated spectrophotometrically at 25.0 degrees C, pH = 9.0, 1 x 10(-5) mol dm(-3) < or = [S(IV)] < or = 8 x 10(-5) mol dm(-3), [Cu(II)]= 1 x 10(-3) mol dm(-3), 1 x 10(-6) mol dm(-3) < or = [Ni(II)] or [Co(II)] < or = 1 x 10(-4) mol dm(-3), [O2] approximately 2.5 x 10(-4) mol dm(-3), and 0.1 mol dm(-3) ionic strength. In the absence of added nickel(II) or cobalt(II), the kinetic traces of Cu(III)G4 formation show a large induction period (about 3 h). The addition of trace amounts of Ni(II) or Co(II) increases the reaction rate significantly and the induction period drastically decreases (less than 0.5 s). The effectiveness of Cu(III)G4 formation becomes much higher. The metal ion in the trivalent oxidation state rapidly oxidizes SO3(2-) to SO3*-, which reacts with oxygen to produce SO5*-. The strongly generated oxidants oxidize Cu(II)G4 to Cu(III).  相似文献   

3.
Kinetic studies of cyanide exchange on [M(CN)(4)](2-) square-planar complexes (M = Pt, Pd, and Ni) were performed as a function of pH by (13)C NMR. The [Pt(CN)(4)](2-) complex has a purely second-order rate law, with CN(-) as acting as the nucleophile, with the following kinetic parameters: (k(2)(Pt,CN))(298) = 11 +/- 1 s(-1) mol(-1) kg, DeltaH(2) (Pt,CN) = 25.1 +/- 1 kJ mol(-1), DeltaS(2) (Pt,CN) = -142 +/- 4 J mol(-1) K(-1), and DeltaV(2) (Pt,CN) = -27 +/- 2 cm(3) mol(-1). The Pd(II) metal center has the same behavior down to pH 6. The kinetic parameters are as follows: (k(2)(Pd,CN))(298) = 82 +/- 2 s(-1) mol(-1) kg, DeltaH(2) (Pd,CN) = 23.5 +/- 1 kJ mol(-1), DeltaS(2) (Pd,CN) = -129 +/- 5 J mol(-1) K(-1), and DeltaV(2) (Pd,CN) = -22 +/- 2 cm(3) mol(-1). At low pH, the tetracyanopalladate is protonated (pK(a)(Pd(4,H)) = 3.0 +/- 0.3) to form [Pd(CN)(3)HCN](-). The rate law of the cyanide exchange on the protonated complex is also purely second order, with (k(2)(PdH,CN))(298) = (4.5 +/- 1.3) x 10(3) s(-1) mol(-1) kg. [Ni(CN)(4)](2-) is involved in various equilibrium reactions, such as the formation of [Ni(CN)(5)](3-), [Ni(CN)(3)HCN](-), and [Ni(CN)(2)(HCN)(2)] complexes. Our (13)C NMR measurements have allowed us to determine that the rate constant leading to the formation of [Ni(CN)(5)](3-) is k(2)(Ni(4),CN) = (2.3 +/- 0.1) x 10(6) s(-1) mol(-1) kg when the following activation parameters are used: DeltaH(2)() (Ni,CN) = 21.6 +/- 1 kJ mol(-1), DeltaS(2) (Ni,CN) = -51 +/- 7 J mol(-1) K(-1), and DeltaV(2) (Ni,CN) = -19 +/- 2 cm(3) mol(-1). The rate constant of the back reaction is k(-2)(Ni(4),CN) = 14 x 10(6) s(-1). The rate law pertaining to [Ni(CN)(2)(HCN)(2)] was found to be second order at pH 3.8, and the value of the rate constant is (k(2)(Ni(4,2H),CN))(298) = (63 +/- 15) x10(6) s(-1) mol(-1) kg when DeltaH(2) (Ni(4,2H),CN) = 47.3 +/- 1 kJ mol(-1), DeltaS(2) (Ni(4,2H),CN) = 63 +/- 3 J mol(-1) K(-1), and DeltaV(2) (Ni(4,2H),CN) = - 6 +/- 1 cm(3) mol(-1). The cyanide-exchange rate constant on [M(CN)(4)](2-) for Pt, Pd, and Ni increases in a 1:7:200 000 ratio. This trend is modified at low pH, and the palladium becomes 400 times more reactive than the platinum because of the formation of [Pd(CN)(3)HCN](-). For all cyanide exchanges on tetracyano complexes (A mechanism) and on their protonated forms (I/I(a) mechanisms), we have always observed a pure second-order rate law: first order for the complex and first order for CN(-). The nucleophilic attack by HCN or solvation by H(2)O is at least nine or six orders of magnitude slower, respectively than is nucleophilic attack by CN(-) for Pt(II), Pd(II), and Ni(II), respectively.  相似文献   

4.
Stopped-flow spectrophotometric measurements identify and determine equilibrium data for thiourea (tu) complexes of copper(II) formed in aqueous solution. In excess Cu(II), the complex ion [Cu(tu)](2+) has a stability constant beta(1) = 2.3 +/- 0.1 M(-)(1) and molar absorptivity at 340 nm of epsilon(1) = (4.0 +/- 0.2) x 10(3) M(-)(1) cm(-)(1) at 25.0 degrees C, 2.48 mM HClO(4), and &mgr; = 464 mM (NaClO(4)). The fast reduction of Cu(II) by excess tu obeys the rate law -d[Cu(II)]/dt = k'[Cu(II)](2)[tu](7) with a value for the ninth-order rate constant k' = (1.60 +/- 0.18) x 10(14) M(-)(8) s(-)(1), which derives from a rate-determining step involving the bimolecular decomposition of two complexed Cu(II) species. Copper(II) catalyzes the reduction of hexachloroiridate(IV) by tu according to the rate law -d[IrCl(6)(2)(-)]/dt = (k(2,unc)[tu](2) + k(1,cat) [tu](5)[Cu(II)])[IrCl(6)(2)(-)]. Least-squares analysis yields values of k(2,unc) and k(1,cat) equaling 385 +/- 4 M(-)(2) s(-)(1) and (3.7 +/- 0.1) x 10(13) M(-)(6) s(-)(1), respectively, at &mgr; = 115 mM (NaClO(4)). The corresponding mechanism has a rate-determining step that involves the oxidation of [Cu(II)(tu)(5)](2+) by [IrCl(6)](2)(-) rather than the bimolecular reaction of two cupric-tu complexes.  相似文献   

5.
The pyrazole-based diamide ligand N,N'-bis(2-pyridylmethyl)pyrazole-3,5-dicarboxamide (H(3)L) has been structurally characterised and successfully employed in the preparation of [2 x 2] grid-type complexes. Thus, the reaction of H(3)L with Cu(ClO(4))2.6H(2)O or Ni(ClO(4))2.6H(2)O in the presence of added base (NaOH) affords the tetranuclear complexes [M(4)(HL(4))].8H(2)O (1: M = Cu, 2: M = Ni). Employment of a mixture of the two metal salts under otherwise identical reaction conditions leads to the formation of the mixed-metal species [Cu(x)Ni(4-x)(HL)(4)].8H(2)O (x相似文献   

6.
Lan YQ  Li SL  Wang XL  Shao KZ  Du DY  Zang HY  Su ZM 《Inorganic chemistry》2008,47(18):8179-8187
Six polyoxometalate (POM)-based hybrid materials have been designed and synthesized based on octamolybdate building blocks and copper-organic units at different pH values under hydrothermal conditions, namely, [H2bbi][Cu(II)(bbi)2(beta-Mo8O26)] (1), [Cu(II)(bbi)2(H2O)(beta-Mo8O26)0.5] (2), [Cu(II)(bbi)2(alpha-Mo8O26)][Cu(I)(bbi)]2 (3), [Cu(II)Cu(I)(bbi)3(alpha-Mo8O26)][Cu(I)(bbi)] (4), [Cu(I)(bbi)]2[Cu(I)2(bbi)2(delta-Mo8O26)0.5][alpha-Mo8O26]0.5 (5), and [Cu(I)(bbi)][Cu(I)(bbi)(theta-Mo8O26)0.5] (6), where bbi is 1,1'-(1,4-butanediyl)bis(imidazole). Their crystal structures have been determined by X-ray diffraction. In compound 1, the bbi ligands with bis-monodentate coordination modes link Cu(II) cations to generate a 2D copper-organic unit with (4, 4) net, which is pillared by the (beta-Mo8O26)(4-) anions to form a 3D framework with alpha-Po topology. The similar copper-organic units are connected alternately by (beta-Mo8O26)(4-) anions to generate a 3D 2-fold interpenetrating (4,6)-connected framework with (4(4) x 6(2))(4(4) x 6(10) x 8) topology in compound 2. Compounds 3 and 4 are supramolecular isomers with polythreaded topology. If Cu (I)...O interactions are considered, the structure of 3 is a novel self-penetrating (3,4,6)-connected framework with (5(2) x 8)2(5(4) x 6 x 8)(4(4) x 6(10) x 10) topology, and the structure of 4 is a (4,6)-connected framework with (4(2) x 6(3) x 7)(5.6(4) x 8)(4(2) x 5(6) x 6(6) x 8)(4(2) x 5(6) x 6(4) x 7 x 8(2)) topology. Different from compounds 3 and 4, compounds 5 and 6 are supramolecular isomers with polythreaded topology based on different octamolybdate isomers. By careful inspection of the structures of 1-6, it is believed that various copper-organic units, which are formed by bbi ligands combined with Cu(II)/Cu(I) cations, octamolybdates with different types and coordination modes, and the nonbonding interactions between polyanions and copper-organic units are important for the formation of the different structures. In addition, with step by step increasing of the amount of organic amine, we have achieved the transformation of Cu(II) ions into Cu(I) ones in different degrees in POMs-based metal-organic frameworks (MOFs) for the first time. The infrared spectra, X-ray powder diffraction, and thermogravimetric analyses have been investigated in detail for all compounds, and the luminescent properties have been also been investigated for compounds 3 and 4.  相似文献   

7.
Kim M  Picot A  Gabbaï FP 《Inorganic chemistry》2006,45(14):5600-5606
The reaction of the palladium(II) acetate derivative [Pd(NwedgeC)(OAc)]2 (NwedgeC = (NC5H4-2-C6H4(C2,N) or (2-(2-pyridyl)-phenyl-C,N)) with methylparathion and water in THF leads to the formation of [Pd(NwedgeC)(mu-SP(=O)(OCH3)2)]2 (1), which reacts with PPh3 in THF to afford mononuclear complex [Pd(NwedgeC)(SP(=O)(OCH3)2)(PPh3)] (2). Compounds 1 and 2 have been characterized by 1H, 13C, and 31P NMR spectroscopy; elemental analysis; and single-crystal X-ray diffraction. When dissolved in water, 1 serves as a precatalyst for the hydrolysis of methylparathion. Kinetic and spectroscopic studies suggest that compound 1 dissociates in aqueous solution to afford cationic diaqua complex [Pd(NwedgeC)(OH2)2]+ (A). At basic pH, A is converted into its deprotonated form [Pd(NwedgeC)(OH2)(OH)] (B), which dimerizes to afford a dinuclear complex, presumably [Pd(NwedgeC)(mu-OH)]2 (C). At pH 7, the reaction is first order in substrate and first order in palladium catalyst A, with k2 = 146 +/- 9 M(-1) s(-1) at 303 K. At more-basic pH, the reaction rate increases and shows an apparent half-order dependence in palladium catalyst. These observations suggest that the active form of the catalyst at basic pH is B, whose concentration is controlled by an equilibrium with inactive C. Analysis of the data obtained at pH 9 yields a dimer formation constant K(f) = [C]/[B]2 = (6.6 +/- 5.6) x 10(6) M(-1) and a second-order rate constant k2 of (8.6 +/- 3.6) x 10(3) M(-1) s(-1) at 298 K. The pH dependence of the reaction rate as well as a spectroscopic titration indicates that the pKa of A is in the 9.5-9.7 range. Determination of the activation parameters at both pH 7 and 9 suggests that catalysis occurs via an associative mechanism whose rate-determining step involves the substitution of a water ligand of A by a molecule of methylparathion at neutral pH and nucleophilic attack of the phosphorus center of methylparathion by a hydroxide ligand of B at basic pH.  相似文献   

8.
Copper(II) complexes of three bis(tacn) ligands, [Cu(2)(T(2)-o-X)Cl(4)] (1), [Cu(2)(T(2)-m-X)(H(2)O)(4)](ClO(4))(4).H(2)O.NaClO(4) (2), and [Cu(2)(T(2)-p-X)Cl(4)] (3), were prepared by reacting a Cu(II) salt and L.6HCl (2:1 ratio) in neutral aqueous solution [T(2)-o-X = 1,2-bis(1,4,7-triazacyclonon-1-ylmethyl)benzene; T(2)-m-X = 1,3-bis(1,4,7-triazacyclonon-1-ylmethyl)benzene; T(2)-p-X = 1,4-bis(1,4,7-triazacyclonon-1-ylmethyl)benzene]. Crystals of [Cu(2)(T(2)-m-X)(NPP)(mu-OH)](ClO(4)).H(2)O (4) formed at pH = 7.4 in a solution containing 2 and disodium 4-nitrophenyl phosphate (Na(2)NPP). The binuclear complexes [Cu(2)(T(2)-o-XAc(2))(H(2)O)(2)](ClO(4))(2).4H(2)O (5) and [Cu(2)(T(2)-m-XAc(2))(H(2)O)(2)](ClO(4))(2).4H(2)O (6) were obtained on addition of Cu(ClO(4))(2).6H(2)O to aqueous solutions of the bis(tetradentate) ligands T(2)-o-XAc(2) (1,2-bis((4-(carboxymethyl)-1,4,7-triazacyclonon-1-yl)methyl)benzene and T(2)-m-XAc(2) (1,3-bis((4-(carboxymethyl)-1,4,7-triazacyclonon-1-yl)methyl)benzene), respectively. In the binuclear complex, 3, three N donors from one macrocycle and two chlorides occupy the distorted square pyramidal Cu(II) coordination sphere. The complex features a long Cu...Cu separation (11.81 A) and intermolecular interactions that give rise to weak intermolecular antiferromagnetic coupling between Cu(II) centers. Complex 4 contains binuclear cations with a single hydroxo and p-nitrophenyl phosphate bridging two Cu(II) centers (Cu...Cu = 3.565(2) A). Magnetic susceptibility studies indicated the presence of strong antiferromagnetic interactions between the metal centers (J = -275 cm(-1)). Measurements of the rate of BNPP (bis(p-nitrophenyl) phosphate) hydrolysis by a number of these metal complexes revealed the greatest rate of cleavage for [Cu(2)(T(2)-o-X)(OH(2))(4)](4+) (k = 5 x 10(-6) s(-1) at pH = 7.4 and T = 50 degrees C). Notably, the mononuclear [Cu(Me(3)tacn)(OH(2))(2)](2+) complex induces a much faster rate of cleavage (k = 6 x 10(-5) s(-1) under the same conditions).  相似文献   

9.
Solutions of the Ni(IV) complex of the dianion of 2,6-diacetylpyridine dioxime (chelate II in text) are reduced very slowly by 2-aminoethanethiol at pH 2.3-3.0, but this reaction is catalyzed dramatically and specifically by dissolved copper, with Cu(I) the active reductant. When the [thiol]/[Ni(IV)] ratio exceeds 1.6, each Ni(IV) oxidizes two molecules of thiol, forming Ni(II) and R(2)S(2). At low concentrations of catalyst and reductant, reaction profiles are almost exponential, but at higher concentrations of either, curves become progressively more nearly linear. Reactions are sharply retarded by increases in acidity. Profiles for 14 runs, carried out with [H(+)] = 0.001-0.0040 M, [Ni(IV)] = (0.94-1.2) x 10(-)(5) M, [thiol] = (2.0-32) x 10(-)(4) M, and [Cu(2+)] = (2.5-80) x 10(-)(6)M, are consistent with a reaction sequence (eqs 2-10 in text) in which Cu(I) is generated in competing homolyses of the complexes Cu(II)(SRH) and Cu(II)(SRH)(2). Reduction of Ni(IV) appears then to proceed through a Ni(IV)Cu(I) adduct, which can undergo electron transfer (yielding Ni(III) and Cu(II)), either in a unimolecular fashion or, alternatively, as a result of attack by a second Cu(I) species. The Ni(IV)Cu(I) + Cu(I) process is reflected in approach to second-order dependences on [Cu(II)] and [thiol] (which generate Cu(I)) at high concentrations of these reagents. Reductions of the Ni(III) intermediate are taken to be much more rapid than those of Ni(IV). Kinetic trends in the present system stand in contrast to the more familiar catalytic patterns such as those seen when the same combination of thiol and catalyst is used to reduce superoxo complexes of cobalt(III). With the latter reactions, decay profiles for the oxidant tend to be exponential at high reagent concentrations but approach linearity at low.  相似文献   

10.
Complex formation of the two tetraamine ligands (2S,3S)-1,2,3,4-tetraaminobutane (threo-tetraaminobutane, ttab) and (2R,3S)-1,2,3,4-tetraaminobutane (erythro-tetraaminobutane, etab) with Co(III), Ni(II), Cu(II), and Pd(II) was investigated in aqueous solution and in the solid state. For Ni(II) and Cu(II), the pH-dependent formation of a variety of species [Mn(II)xLyHz](2x+z)+ was established by potentiometric titrations and UV/Vis spectroscopy. In sufficiently acidic solutions the divalent cations formed a mononuclear complex with the doubly protonated ligand of composition [M(H2L)]4+. An example of such a complex was characterized in the crystal structure of [Pd(H2ttab)Cl2]Cl2.H2O. If the metal cation was present in excess, increase of pH resulted in the formation of dinuclear complexes [M2L]4+. Such a species was found in the crystal structure of [Cu2(ttab)Br4].H2O. Excess ligand, on the other hand, lead to the formation of a series of mononuclear bis-complexes [Mq(HxL)(HyL)](q+x+y)+. The crystal structure of [Co(Hetab)2][ZnCl4]2Cl. H2O with the inert, trivalent Co(III) center served as a model to illustrate the structural features of this class of complexes. By using an approximately equimolar ratio of the ligand and the metal cation, a variety of polymeric aggregates both in dilute aqueous solution and in the solid state were observed. The crystal structure of Cu2(ttab)3Br4, which exhibits a two-dimensional, infinite network, and that of [Ni8(ttab)12]Br16.17.5H2O, which contains discrete chiral [Ni8(ttab)12]16+ cubes with approximate T symmetry, are representative examples of such polymers. The energy of different diastereomeric forms of such complexes with the two tetraamine ligands were analyzed by means of molecular mechanics calculations, and the implications of these calculations for the different structures are discussed.  相似文献   

11.
X-ray structural and spectroscopic properties of a series of heterodinuclear d(8)-d(10) metal complexes [M'M' '(mu-dcpm)(2)(CN)(2)](+) containing d(8) Pt(II), Pd(II), or Ni(II) and d(10) Au(I), Ag(I), or Cu(I) ions with a dcpm bridging ligand have been studied (dcpm = bis(dicyclohexylphosphino)methane; M' = Pt, M' ' = Au 4, Ag 5, Cu, 6; M' ' = Au, M' = Pd 7, Ni 8). X-ray crystal analyses showed that the metal...metal distances in these heteronuclear metal complexes are shorter than the sum of van der Waals radii of the M' and M' ' atoms. The UV-vis absorption spectra of 4-6 display red-shifted intense absorption bands from the absorption spectra of the mononuclear trans-[Pt(phosphine)(2)(CN)(2)] and [M' '(phosphine)(2)](+) counterparts, attributable to metal-metal interactions. The resonance Raman spectra confirmed assignments of (1)[nd(sigma)-->(n + 1)p(sigma)] electronic transitions to the absorption bands at 317 and 331 nm in 4 and 6, respectively. The results of theoretical calculations at the MP2 level reveal an attractive interaction energy curve for the skewed [trans-Pt(PH(3))(2)(CN)(2)-Au(PH(3))(2)(+)] dimer. The interaction energy of Pt(II)-Au(I) was calculated to be ca. 0.45 ev.  相似文献   

12.
The catecholase activity of a series of dicopper(II) complexes containing different numbers of phenol groups coordinated to the metal centers was studied to identify functional as well as structural models for the type III copper enzymes tyrosinase and catechol oxidase. The syntheses and characterization of complexes [Cu(2)(H(2)bbppnol)(mu-OAc)(H(2)O)(2)]Cl(2).2H(2)O (1) and [Cu(2)(Hbtppnol)(mu-OAc)](ClO(4))(2) (2) were previously reported by us (Inorg. Chim. Acta 1998, 281, 111-115; Inorg. Chem. Commun. 1999, 2, 334-337), and complex [Cu(2)(P1-O(-))(OAc(-))](ClO(4))(2) (3) was previously reported by Karlin et al. (J. Am. Chem. Soc. 1997, 119, 2156-2162). The catalytic activity of the complexes 1-3 on the oxidation of 3,5-di-tert-butylcatechol was determined spectrophotometrically by monitoring the increase of the 3,5-di-tert-butyl-o-benzoquinone characteristic absorption band at about 400 nm over time in methanol saturated with O(2)/aqueous buffer pH 8 solutions at 25 degrees C. The complexes were able to oxidize 3,5-di-tert-butylcatechol to the corresponding o-quinone with distinct catalytic activity. A kinetic treatment of the data based on the Michaelis-Mentèn approach was applied. The [Cu(2)(H(2)bbppnol)(mu-OAc)(H(2)O)(2)]Cl(2) small middle dot2H(2)O complex showed the highest catalytic activity of the three complexes as a result of a high turnover rate (k(cat) = 28 h(-1)) combined with a moderate substrate-catalyst binding constant (K(ass) = 1.3 x 10(3) M(-1)). A mechanism for the oxidation reaction is proposed, and reactivity differences, k(cat)/K(M) of the complexes, were found to be dependent on (DeltaE)(1,2), the difference in the driving force for the reduction reactions Cu(II)(2)/Cu(II)Cu(I) and Cu(II)Cu(I)/Cu(I)(2).  相似文献   

13.
The formation of the sitting-atop (SAT) complexes of 5,10,15,20-tetraphenylporphyrin (H(2)tpp), 5,10,15,20-tetrakis(4-chlorophenyl)porphyrin (H(2)t(4-Clp)p), 5,10,15,20-tetramesitylporphyrin (H(2)tmp), and 2,3,7,8,12,13,17,18-octaethylporphyrin (H(2)oep) with the Cu(II) ion was spectrophotometrically confirmed in aqueous acetonitrile (AN), and the formation rates were determined as a function of the water concentration (C(W)). The decrease in the conditional first-order rate constants with the increasing C(W) was reproduced by taking into consideration the contribution of [Cu(H(2)O)(an)(5)](2+) in addition to [Cu(an)(6)](2+) to form the Cu(II)-SAT complexes. The second-order rate constants for the reaction of [Cu(an)(6)](2+) and [Cu(H(2)O)(an)(5)](2+) at 298 K were respectively determined as follows: (4.1 +/- 0.2) x 10(5) and (3.6 +/- 0.2) x 10(4) M(-1) s(-1) for H(2)tpp, (1.15 +/- 0.06) x 10(5) M(-1) s(-1) and negligible for H(2)t(4-Clp)p, and (4.8 +/- 0.3) x 10(3) and (1.3 +/- 0.3) x 10(2) M(-1) s(-1) for H(2)tmp. Since the reaction of H(2)oep was too fast to observe the reaction trace due to the dead time of 2 ms for the present stopped-flow technique, the rate constant was estimated to be greater than 1.5 x 10(6) M(-1) s(-1). According to the structure of the Cu(II)-SAT complexes determined by the fluorescent XAFS measurements, two pyrrolenine nitrogens of the meso-substituted porphyrins (H(2)tpp and H(2)tmp) bind to the Cu(II) ion with a Cu-N(pyr) distance of ca. 2.04 A, while those of the beta-pyrrole-substituted porphyrin (H(2)oep) coordinate with the corresponding bond distance of 1.97 A. The shorter distance of H(2)oep is ascribed to the flexibility of the porphyrin ring, and the much greater rate for the formation of the Cu(II)-SAT complex of H(2)oep than those for the meso-substituted porphyrins is interpreted as due to a small energetic loss at the porphyrin deformation step during the formation of the Cu(II)-SAT complex. The overall formation constants, beta(n), of [Cu(H(2)O)(n)()(an)(6)(-)(n)](2+) for the water addition in aqueous AN were spectrophotometrically determined at 298 K as follows: log(beta(1)/M(-1)) = 1.19 +/- 0.18, log(beta(2)/M(-2)) = 1.86 +/- 0.35, and log(beta(3)/M(-3)) = 2.12 +/- 0.57. The structure parameters around the Cu(II) ion in [Cu(H(2)O)(n)(an)(6-n)](2+) were determined using XAFS spectroscopy.  相似文献   

14.
The Fe(II) of the binuclear Fe(II)Fe(III) active site of pig purple acid phosphatase (uteroferrin) has been replaced in turn by five M(II) ions (Mn(II), Co(II), Ni(II), Cu(II), and Zn(II)). An uptake of 1 equiv of M(II) is observed in all cases except that of Cu(II), when a second more loosely bound Cu(II) is removed by treatment with edta. The products have been characterized by different analytical procedures and by UV-vis spectrophotometry. At 25 degrees C, I = 0.100 M (NaCl), the nonenzymatic reactions with H(2)PO(4)(-) give the mu-phosphato product, and formation constants K/M(-1) show an 8-fold spread at pH 4.9 of 740 (Mn), 165 (Fe), 190 (Co), 90 (Ni), 800 (Cu), 380 (Zn). The variations in K correlate well with stability constants for the complexing of H(2)PO(4)(-) and (CH(3)O)HPO(3)(-) with M(II) hexaaqua ions. At pH 4.9 with [H(2)PO(4)(-)] > or = 3.5 mM rate constants k(obs) decrease, and an inhibition process in which a second [H(2)PO(4)(-)] coordinates to the dinuclear center is proposed. The mechanism considered accounts for most but not all of the features displayed. Thus K(1) values for the coordination of phosphate to M(II) are in the range10-60 M(-1), whereas K(2) values for the bridging of the phosphate to Fe(III) are in the narrower range 7.8-12.4. From the fits described K(i) approximately 10(3) M(-1) for the inhibition step, which is independent of the identity of M(II). Values of k(obs) decrease with increasing pH, giving pK(a) values which are close to 3.8 and independent of M(II) (Fe(II), Zn(II), Mn(II)). The acid dissociation process is assigned to Fe(III)-OH(2) to Fe(III)-OH(-), where OH(-) is less readily displaced by phosphate.  相似文献   

15.
In this research, bis(2,2'-bipyridine)(4-methyl-2,2'-bipyridine-4'-carboxylic acid)ruthenium(II).2PF(6)- complex (1), was first used as a fluorescent chemosensor to recognize Cu(II) in EtOH/H(2)O (1:1, v/v) solution. The response of the sensor is based on the fluorescence quenching of complex 1 by binding with Cu(II). The analytical performance characteristics of the proposed Cu(II)-sensitive chemosensor were investigated. The sensor can be applied to the quantification of Cu(II) with a linear range covering from 5.0 x 10(-8) to 1.0 x 10(-4) M and a detection limit of 4.2 x 10(-8) M. The experiment results show that the response behavior of 1 to Cu(II) is pH independent in medium condition (pH 4.0 - 8.0), and show excellent selectivity for Cu(II) over other transition metal cations.  相似文献   

16.
Das S  Saha A  Mandal PC 《Talanta》1996,43(1):95-102
Formation of Cu(II) and Ni(II) complexes of 1,2,-dihydroxy-9,10-anthraquinone (DHA) has been studied by the spectrophotometric method. Both the metals form stable complexes of the type [M(LH)(3)](-) where LHH(1) represents DHA. The effective stability constant of the Cu(II) complex is 5.135 x 10(29) while that of the Ni(II) complex is 3.446 x 10(25). These complexes, unlike free DHA, do not catalyze the flow of electrons from NADH to molecular O(2) through NADH dehydrogenase.  相似文献   

17.
The quantitative influence of Cu(II) on the interaction of eukaryotic DNA with sulfite (SO(3)(2-)), which is a derivative of sulfur dioxide in the human body, was studied using ultraviolet (UV) absorption spectrometry. The results showed that under physiological pH conditions, SO(3)(2-) reacted weakly with DNA at concentrations of up to 10(-1)M, at which point a rapid increase in the reaction constant and the reaction number of SO(3)(2-) with DNA was observed. The addition of Cu(II) at concentrations ranging from 6.67 x 10(-4) to 3.33 x 10(-3)M to DNA-SO(3)(2-) binary systems increased the reaction constant of SO(3)(2-) with DNA 41- to 115-fold at a low concentration of SO(3)(2-) (10(-3)M), and 4- to 84-fold at an intermediate concentration of SO(3)(2-) (10(-2)M), but had little influence on the reaction number of SO(3)(2-) with DNA compared with the absence of Cu(II). When the concentration of SO(3)(2-) reached 10(-1)M, the presence of Cu(II) reduced the reaction number but had no effect on the reaction constant of SO(3)(2-) with DNA. These results show that the efficiency of SO(3)(2-) is increased in the presence of Cu(II) at high concentrations of SO(3)(2-).  相似文献   

18.
The synthesis, UV-vis spectra, and electrochemical behavior of the nitrile-bonded trans-[Ru(II)Cl(cyclam)(4-NCpyH(+))](BF(4))(2) (4-Ncpy = 4-cyanopyridine; cyclam = 1,4,8,11-tetraazacyclotetradecane) and of trans-[Ru(III)Cl(cyclam)(NHC(O)-4-pyH(+))](2+) are described. The UV-vis spectrum of the Ru(II) nitrile complex shows a MLCT band at 548 nm at pH 1, which is shifted to 440 nm at pH approximately 6, for the unprotonated species. trans-[Ru(II)Cl(cyclam)(4-NCpyH(+))](2+) was electrolytically oxidized (+600 mV vs Ag/AgCl) at pH 1 to Ru(III), followed by hydrolysis (k = 0.25 s(-1)) of the coordinated nitrile to give trans-[Ru(III)Cl(cyclam)(NHC(O)-4-pyH(+))](2+), in which the amide is deprotonated and coordinated through nitrogen. The identity of the species is pH dependent, the nitrogen-bonded amide prevailing at low pH (< 7), but the oxygen-bonded amide is formed through linkage isomerization at higher pH (>8). Reduction of trans-[Ru(III)Cl(cyclam)(NHC(O)-4-pyH)](2+) in acidic media does not result in fast aquation (k = approximately 2.4 x 10(-5) s(-1)) as for other amides on ruthenium(II) pentaammine, but instead linkage isomerization occurs, resulting in the oxygen-bonded species, with an estimated rate constant of approximately 2 x 10(-2) s(-1), smaller than in the pentaammine analogues.  相似文献   

19.
A series of chiral M(6)M'(8) cluster compounds having twelve free carboxylate groups, [M(6)M'(8)(D-pen-N,S)(12)X](5-) (M/M'/X = Pd(II)/Ag(I)/Cl(-) ([1](5-)), Pd(II)/Ag(I)/Br(-) ([2](5-)), Pd(II)/Ag(I)/I(-) ([3](5-)), Ni(II)/Ag(I)/Cl(-) ([4](5-)), Pt(II)/Ag(I)/Cl(-) ([5](5-)), Pd(II)/Cu(I)/Cl(-) ([6](5-)); D-H(2)pen = D-penicillamine), in which six cis-[M(D-pen-N,S)(2)](2-) square-planar units are bound to a [M'(8)X](7+) cubic core through sulfur-bridges, was synthesized by the reactions of cis-[M(D-pen-N,S)(2)](2-) with M' in water in the presence of halide ions. These M(6)M'(8) clusters readily reacted with La(3+) in aqueous buffer to form La(III)(2)M(6)M'(8) heterotrimetallic compounds, La(2)[1](CH(3)COO), La(2)[2](CH(3)COO), La(2)[3](CH(3)COO), La(2)[4](CH(3)COO), La(2)[5](CH(3)COO) and La(2)[6]Cl, in which the M(6)M'(8) cluster units are linked by La(3+) ions through carboxylate groups in a 1?:?2 ratio. While the La(III)(2)M(6)Ag(I)(8) compounds derived from [1](5-), [2](5-), [3](5-), [4](5-) and [5](5-) have a 1D helix supramolecular structure with a right-handedness, the La(III)(2)Pd(II)(6)Cu(I)(8) compound derived from [6](5-) has a 2D sheet-like structure with a triangular grid of the Pd(II)(6)Cu(I)(8) cluster units. When aqueous HCl was added to the reaction solution of [6](5-) and La(3+), another La(III)(2)Pd(II)(6)Cu(I)(8) heterotrimetallic compound, La(2)[6]Cl·HCl, in which the Pd(II)(6)Cu(I)(8) cluster units are linked by La(3+) ions to form a 2D structure with a rectangular grid, was produced. The solid-state structures of these La(III)(2)M(6)M'(8) compounds, determined by single-crystal X-ray crystallography, along with the spectroscopic properties of the M(6)M'(8) cluster compounds in solution, are described.  相似文献   

20.
Isolation of the free bicyclic tetraamine, [3(5)]adamanzane.H(2)O (1,5,9,13-tetraazabicyclo[7.7.3]nonadecane.H(2)O), is reported along with the synthesis and characterization of a copper(II) complex of the smaller macrocycle [(2.3)(2).2(1)]adamanzane (1,5,9,12-tetraazabicyclo[7.5.2]hexadecane) and of three cobalt(II), four nickel(II), one copper(II), and two zinc(II) complexes with [3(5)]adamanzane. For nine of these compounds (2-8, 10b, and 12) the single-crystal X-ray structures were determined. The coordination geometry around the metal ion is square pyramidal in [Cu([(2.3)(2).2(1)]adz)Br]ClO(4) (2) and trigonal bipyramidal in the isostructural structures [Cu([3(5)]adz)Br]Br (3), [Ni([3(5)]adz)Cl]Cl (5), [Ni([3(5)]adz)Br]Br (6), and [Co([3(5)]adz)Cl]Cl (8). In [Ni([3(5)]adz)(NO(3))]NO(3) (4) and [Ni([3(5)]adz)(ClO(4))]ClO(4) (7) the coordination geometry around nickel(II) is a distorted octahedron with the inorganic ligands at cis positions. The coordination polyhedron around the metal ion in [Co([3(5)]adz)][ZnCl(4)] (10b) and [Zn([3(5)]adz)][ZnCl(4)] (12) is a slightly distorted tetrahedron. Anation equilibrium constants were determined spectrophotometrically for complexes 2-6 at 25 and 40 degrees C and fall in the region 2-10 M(-1) for the halide complexes and 30-65 M(-1) for the nickel(II) nitrate complex (4). Rate constants for the dissociation of the macrocyclic ligand from the metal ions in 5 M HCl were determined for complexes 2, 3, 5, 8, 10, and 12. The reaction rates vary from half-lives at 40 degrees C of 14 min for the dissociation of the Zn([3(5)]adz)(2+) complex (12) to 14-15 months for the Ni([3(5)]adz)Cl(+) ion (5).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号